Mizz Bizz Management, LLC BUSINESS MANAGEMENT AND BOOKKEEPING SERVICES

15315 Magnolia Blvd., Ste 404 Sherman Oaks, CA 91403 818 783-7007 ph 866 870-6574 fax marcelle@mizzbizz.com TO BE OPENED BY
ADDRESSEE ONLY

November 9, 2011

To: Kim Muratore, Case Developer (SFD-7-5) From: Marcelle Zanarini Case Development Cost Recovery Section/Division U.S. EPA, Region 9
75 Hawthorne St. Mail Code SFD = 7 -5
San Francisco, CA 94105

- Re: EPA's CERCLA Request for Information Letter
 - o 12600 Saticoy St., North Hollywood Ca
 - Owner Ziv Enterprises LLC Sylvia Ziv

Attached please find the following reports regarding the above-mentioned subject matter per your request. Please note I will email you on Monday pictures and a letter from state agency regarding the clean up at this location. Moreover, all future correspondence should be updated and sent to our office address attention Sylvia Ziv, Ziv Enterprises.

If you have any questions, please do not hesitate to contact me.

✓ Please take appropriate action
✓ For your information and files
✓ In accordance with your request
Please sign and return
Please advise how to handle
✓ Please acknowledge receipt
Please record
✓Other- Please see all attachments and disc copy.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION IX 75 Hawthorne Street San Francisco, CA 94105

Certified Mail Number 7010 1060 0002 0234 5706
Return Receipt Requested

MAY 0 4 2811

Sylvia Ziv Ziv Enterprises, LLC 28104 Witherspoon Parkway Valencia, CA 91355

Re: Information Request Letter for the San Fernando Valley/North Hollywood

Superfund Site

North Hollywood, California

Dear Ms. Ziv:

The United States Environmental Protection Agency ("EPA") is spending public funds to investigate and respond to actual or threatened releases of hazardous substances, pollutants, and contaminants at the San Fernando Valley Area 1 site, North Hollywood Operable Unit ("NHOU" or "the Site"), located in Los Angeles County, California. This letter seeks your cooperation in providing information and documents relating to contamination underlying all or portions of the cities of Burbank, Los Angeles, North Hollywood, Sun Valley, and Pacoima, California. This request is for information you may have pertaining to Ziv Enterprises, LLC's (the "Company") facility currently or formerly located at 12600 Saticoy Street South, North Hollywood, California (the "Facility").

EPA believes that the Company may have information that will assist the EPA in its investigation of the Site, especially with regard to trichloroethylene ("TCE"), tetrachloroethylene ("PCE"), and chromium. EPA requests that the Company answer the questions contained in Enclosure B. Definitions and instructions on how to respond to the questions are provided in Enclosure A.

Under Section 104(e) of CERCLA, 42 U.S.C. §9604(e), EPA has broad information-gathering authority which allows EPA to require persons to furnish information or documents relating to:

- (A) The identification, nature, and quantity of materials which have been or are generated, treated, stored, or disposed of at a vessel or facility or transported to a vessel or facility.
- (B) The nature or extent of a release or threatened release of a hazardous substance or pollutant or contaminant at or from a vessel or facility.
- (C) Information relating to the ability of a person to pay for or perform a cleanup.

W. 1994 regents

Attachment 1 to **ENCLOSURE B: INFORMATION REQUEST**

North Hollywood, CA 91605 North Hollywood, CA 91605

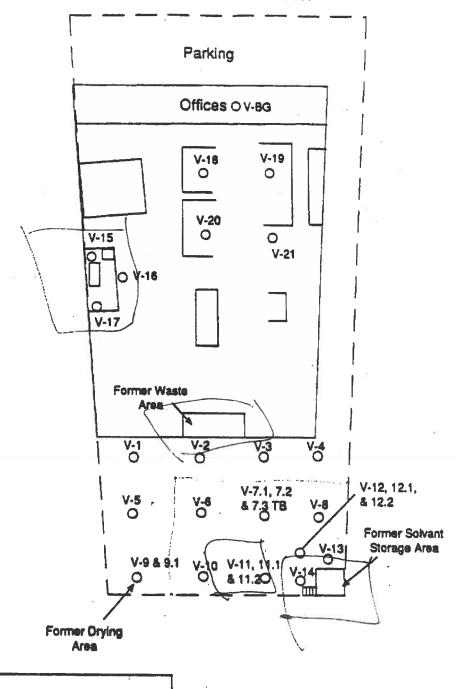
List of Sampling & Investigation Reports

Report of Subsurface Investigation, at former Sprayco, Inc. facility, 12600 Saticoy Street South, North Hollywood, CA, prepared by GeoSystem Consultants, Inc., dated October 1993

Report of Additional Subsurface Investigation, at former Sprayco, Inc. facility, 12600 Saticoy Street South, North Hollywood, CA, prepared by GeoSystem Consultants, Inc., dated April 5, 1994

Soil Vapor Resampling Report, at former Sprayco, Inc. facility, 12600 Saticoy Street South, North Hollywood, CA, prepared by GeoSystem Consultants, Inc. and AeroVironment Inc., dated August 1994 160 page

Report of Nested Vapor Monitoring Well Installation and Sampling, for former Sprayco facility, 12600 Saticoy Street South, North Hollywood, CA, prepared by GeoSystem Consultants, Inc., dated June 1995

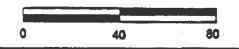

ENCLOSURE B: INFORMATION REQUEST

With the exception of those documents listed in <u>Attachment 1</u> (which have already been obtained by or provided to EPA), please provide copies of all investigation and sampling reports containing environmental data or technical or analytical information regarding soil and water conditions at the Facility, including, but not limited to, data or information related to soil contamination, soil sampling, soil gas sampling, geology, water (ground and surface), hydrogeology, and groundwater sampling. In particular, provide copies of the following documents:

-Final report of soil gas investigation results submitted after GeoSystem Consultants, Inc.'s June 1995 Report of Nested Vapor Monitoring Well Installation and Sampling, as indicated by the August 8, 1995 letter to Mark Ziv from the CA Regional Water Quality Control Board (this letter stated that the two sets of monitoring data in the June 1995 Report were "conflicting and inconclusive").

- a. State to the best of the Company's knowledge whether Attachment 1, together with the document(s) listed above, represent a complete listing of all soil, soil gas and groundwater sampling conducted at the Facility. If it does not, and the Company does not have a copy of the additional investigation or sampling report(s), please describe the date and type of sampling conducted, and provide information on where EPA might obtain a copy of the report and related documents.
- b. State whether the Company is aware of any future soil, soil gas or groundwater sampling which is planned at the Facility, and if so, please explain.
- 2. Identify, and provide the following information for, all groundwater wells that are located at the Facility:
 - a. A map with the specific locations of the Facility groundwater wells;
 - b. Date each groundwater well was installed and its current condition (active or inactive);
 - c. Date the Facility groundwater wells were last sampled; and
 - d. List of all constituents which were analyzed during groundwater sampling events (to the extent not provided in response to Request No. 1).
- 3. Identify, and provide copies of, all agency orders, correspondence and/or workplans that discuss proposed soil or groundwater sampling at the Facility but for which the sampling was never conducted. Explain why the proposed sampling was not conducted.
- 4. Provide copies of any due diligence reports or property transfer assessments which relate to the Facility.

SATICOY STREET SOUTH



LEGEND

- O Soil Vapor Sampling Location
- TB Tedlar Bag Sample for Second Column Confirmation

Scale (feet)

Aero Vironment Inc. 222 East Huntington Drive Monrovia, California 91016

SOIL VAPOR SAMPLE LOCATIONS

Former Sprayco Facility 12600 Saticoy St. So. North Hollywood, CA

Project No. 300677

FIGURE

EPA

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION IX 75 Hawthome Street San Francisco, CA 94105-3901

CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD
LGS ANGELES REGION
101 Centre Plaza Drive
Monterey Park, CA 91754-2156

December 31, 1996

FORMER SPRAY CO/TRANSGLOBAL 12600 SATICOY ST. NORTH HOLLYWOOD, CA 91605 File Number, 111:1004

RE SAN FERNANDO VALLEY SUPERFUND AREAS U.S. EPA AND LARWQCB NOTIFICATION OF NO FURTHER ACTION

For property located at: 12600 SATICOY ST.

NORTH HOLLYWOOD, CA 91605

Dear Owner/Operator,

The California Regional Water Quality Control Board, Los Angeles Region ("Regional Board") staff has conducted an assessment of your facility to determine the extent of solvent usage and to assess past and current chemical handling, storage and disposal practices. Your company is among those in the San Fernando Valley which have received the Regional Board's "No Further Action" letters based on one or more of the following categories: 1) information provided in your pre-inspection questionnaire disclosed little or no solvent use; 2) the results of a staff inspection disclosed little or no solvent use; or 3) completed assessment work indicated insignificant or no solvent contamination in soil.

The purpose of this letter is to inform you that, based on the information provided to U.S. EPA by the Regional Board to date, you will not be asked by the U.S. EPA or the Regional Board to participate in regional groundwater cleanup projects currently planned for San Fernando Valley. Your company is no longer part of the U.S. EPA Superfund process, and the Regional Board and U.S. EPA plan no further action concerning your facility.

You may be contacted by those potentially responsible parties ("PRPs") that have been asked to participate in the groundwater cleanup efforts. In the event you are contacted by PRPs, please feel free to contact the appropriate Regional Board or U.S. EPA staff for additional information or assistance. The telephone numbers of Regional Board and U.S. EPA staff are provided on the enclosed contact list.

Sincerely,

Keik. A. Takal

Keith A. Takata Director Superfund Division U.S. EPA, Region 9

enclosure

Robert P. Shirelli

Robert P. Ghirelli, D. Env. Executive Officer California Regional Water Quality Control Board, Los Angeles Office

REPORT

NESTED VAPOR MONITORING WELL INSTALLATION AND SAMPLING

FORMER SPRAYCO, INC. FACILITY 12600 SATICOY STREET SOUTH NORTH HOLLYWOOD, CALIFORNIA (RWQCB FILE No. 111.1004)

JUNE 1995

June 2, 1995

Project No. 93-513

Mr. Mark Ziv Director TRANS GLOBE LIGHTING 8238 Lankershim Boulevard North Hollywood, California 91605

Nested Vapor Monitoring Well Installation and Sampling
Former Sprayco, Inc. Facility
12600 Saticoy Street South
North Hollywood, California
(RWOCB File No. 111,1004)

Dear Mr. Ziv:

This report documents the installation and sampling of a nested vapor monitoring well at the former Sprayco, Inc. (Sprayco) facility (the site) at 12600 Saticoy Street South in the North Hollywood area of Los Angeles, California. The site location is shown in Figure 1 and a plan of the site, showing the location of the nested well, is presented in Figure 2.

By way of background, the nested well was requested by the California Regional Water Quality Control Board, Los Angeles Region (RWQCB) in a letter dated October 11, 1994. According to the RWQCB, the purpose of the nested well was "to define the vertical profile of the contamination in the vapor phase in the area where the data showed the presence of contamination." The soil contamination referred to by the RWQCB involves the chlorinated solvents tetrachloroethylene (PCE), 1,1,1-trichloroethane (TCA), 1,1-dichloroethylene (1,1-DCE), and trichloroethylene (TCE), which were released to the subsurface by Sprayco, a former tenant at the site, as described below.

The remainder of this report includes a summary of background information, a description of the nested vapor monitoring well installation and the two rounds of vapor sampling, a summary and a discussion of the results, and conclusions and recommendations.

BACKGROUND INFORMATION

The contaminants present in near-surface soil at the site were released while Sprayco leased the site. Specifically, the contaminants were released during paint stripping operations in which painted metal parts were soaked in a 55-gallon drum of "paint stripper," removed, and then "hosed down" with water. This practice prompted a complaint from a worker at an adjacent property, which, in turn, resulted in an emergency response by the Los Angeles County Fire Department on August 17, 1990. Investigations by the County indicated several

improper solvent and waste solvent handling procedures, in addition to the release of paint stripper to the ground surface. Sprayco vacated the site the early 1990s, leaving the property owner, who was not responsible in any way for the release, to investigate subsurface conditions at the site under the jurisdiction of the RWQCB.

The initial investigation conducted by Geosystem in July 1993 consisted of collecting and analyzing soil samples from shallow hand-augered borings in three suspected release areas identified by RWQCB staff during a site inspection on November 10, 1990. The investigation, reported on October 6, 1993, identified the presence of halogenated and aromatic volatile organic compounds (VOCs) in soil but at relatively low concentrations and generally limited to the upper 5 feet of the soil profile. The locations of the soil borings are shown in Figure 2 and the results of the soil sample analyses are summarized in Table 1.

Based on these findings, the RWQCB requested a near-surface soil gas survey throughout the rear (south) portion of the site and at certain locations inside the building. Soil gas samples were subsequently collected from a nominal depth of 5 feet below grade at 21 locations; 14 outside the building and 7 inside. The samples were analyzed on site for VOCs and, based on the results, additional soil gas samples were collected from 15 feet below grade at the seven locations where the highest VOC concentrations were detected. Of the VOCs analyzed, only PCE, TCA, 1,1-DCE, and TCE were detected in any of the soil gas samples.

PCE concentrations were measured as high as $128.37 \,\mu g/\ell$ outside the building at survey location V-11. Measured PCE concentrations inside the building ranged from $4.45 \,\mu g/\ell$ to $6.21 \,\mu g/\ell$. TCA concentrations were measured as high as $62.53 \,\mu g/\ell$ outside the building at survey location V-6, and as high as $26.78 \,\mu g/\ell$ inside the building at survey location V-18. Outside the building, 1,1-DCE concentrations ranged from less than $1 \,\mu g/\ell$ (below the detection limit) to $4.19 \,\mu g/\ell$. Inside the building 1,1-DCE concentrations ranged from less than $1 \,\mu g/\ell$ to $3.07 \,\mu g/\ell$. Outside the building, TCE ranged in concentration from less than $1 \,\mu g/\ell$ to $20.26 \,\mu g/\ell$ at survey location V-9. TCE was not detected inside the building. Of the four compounds detected, only PCE was detected at concentrations an order of magnitude above measured background values. The highest PCE concentrations occurred outside the building in the southeastern portion of the site in the vicinity of survey locations V-11 and V-14. The soil gas survey locations are shown in Figure 2 and the results are summarized in Table 2.

In response to the results of the near-surface soil gas survey, reported on April 5, 1994, the RWQCB requested, in a letter dated October 11, 1994, a work plan to "define the vertical profile of the contamination in the vapor phase."

NESTED VAPOR MONITORING WELL INSTALLATION

The nested vapor monitoring well, Well No. NSG-1, was installed by AeroVironment Inc. (AeroVironment), under Geosystem's supervision, on February 10, 1995. The well consists of five separate sample ports installed at nominal depths of 20, 40, 60, 80, and 100 feet below grade. The sample ports are connected to the well head by 1/8-inch diameter Teflon tubing strapped to a 1-inch diameter PVC pipe that extends the full depth of the well. Each sample port is surrounded by No. 3 grade silica sand and separated from adjacent sampling ports by hydrated bentonite. The boring in which the nested wells are installed was drilled using 8-inch diameter, hollow-stem, continuous-flight augers. A lithologic log/well construction diagram for Well NSG-1 is presented in Appendix A.

Undisturbed soil samples were collected at regular intervals during the drilling process. The samples from 20, 40, 70, 80, and 100 feet below grade were analyzed for volatile organic compounds (VOCs) using U.S. Environmental Protection Agency (EPA) Method 8240 by National Environmental Testing, inc. (NET). The samples collected at 40, 70, 80, and 100 feet below grade did not contain any of the VOCs analyzed. Duplicate analyses of the soil sample collected at 20 feet below grade indicted PCE concentrations of 0.047 and 0.007 mg/kg. Copies of the certificates of analyses and sample chain-of-custody documentation are presented in Appendix B.

VAPOR SAMPLING AND ANALYSIS

In accordance with RWQCB guidance, Well NSG-1 was sampled twice, on March 17 and April 20, 1995, about one and two months, respectively, after the well was installed. In both cases, samples from each of the five sample ports were analyzed on site for VOCs by Environmental Support Technologies (EST), of Laguna Hills, California. In addition, a sample collected in a Tedlar bag on March 17, 1995 from the 100-foot sample port was submitted to Orange Coast Analytical, Inc. (OCA), in Tustin, California, for "corroborative" analysis. The results of the two rounds of vapor sampling and analyses are summarized in Table 3. Details of the procedures and copies of the certificates of analyses and chain-of-custody documentation are included in Appendices C (March 17, 1995) and D (April 20, 1995).

In brief, four VOCs were detected in the soil gas samples extracted from the nested vapor monitoring well. The four VOCs were PCE, TCA, 1,1-DCE, and TCE. PCE was the most prevalent compound and was detected in the samples from all five sample ports on both sampling occasions. The concentrations of PCE in soil gas ranged from $3 \mu g/\ell$ in the sample from 80 feet below grade on March 17, 1995 to $143 \mu g/\ell$ in the 40-foot sample on April 20, 1995. The distribution of TCA, 1,1-DCE, and TCE was more irregular but, in general, these

compounds were present in one or more of the samples collected on both occasions. The highest concentrations of TCA, 1,1-DCE, and TCE were detected in the samples collected from the 100-foot sample port. This may indicate that the VOC vapors are not emanating from the ground surface.

SUMMARY AND DISCUSSION

The following summary pertains to the site as a whole and considers the recent data from the nested vapor monitoring well and the results of previous soil and soil gas sampling/analysis.

- o The site is underlain by at least 100 feet of unsaturated granular soil; primarily sands and gravelly sands.
- o Based on contours prepared by the Watermaster for the Upper Los Angeles River Area, the depth to ground water fluctuated between 185 and 260 feet below grade between fall 1977 and fall 1981.
- o The chemical analyses of soil samples collected from hand-augered borings has identified the presence of halogenated and aromatic VOCs in soil but at relatively low concentrations and generally limited to the upper 5 feet of the soil profile. The results of these soil sample analyses are summarized in Table 1.
- O A near-surface soil gas survey indicated that PCE and, to a lesser extent, TCA, 1,1-DCE, and TCE are present in soil gas beneath much of the site. The highest concentrations were reported in the vicinity of the former solvent storage area. The results of the soil gas survey are summarized in Table 2.
- o The data from the nested monitoring well indicate that PCE is present in soil vapor to 100 feet, which is the maximum depth investigated. TCA, 1,1-DCE, and TCE are also present, but they are not detected in all of the samples from the ground surface to 100 feet. The data from the nested well are summarized in Table 3.

As stated in previous reports, it is clear that chemicals released at the Sprayco facility in August 1990 have impacted near-surface soils. However, the VOC concentrations in soil attenuate rapidly with depth to the point that soil samples collected at depths of 20 feet or greater do not contain detectable concentrations. Soil gas samples collected at 20, 40, 60,

80, and 100 feet below grade contain PCE, TCA, 1,1-DCE, and TCE but at low concentrations. Sprayco no longer leases the property and there are no ongoing releases of VOCs at the subject site. The area where the VOCs are believed to have infiltrated into the subsurface is effectively "capped" by high quality asphalt paving, which is expected to all but eliminate the infiltration of surface water runoff and/or direct precipitation. The issue remains, however, whether ground water is likely to be threatened by the VOCs in soil and whether remediation is warranted. This issue is addressed below.

To address the issue of whether the VOCs present in soil warrant remediation, Geosystem evaluated the available data in the context of the RWQCB's February 1995 "Interim Site Assessment and Cleanup Guidebook, Volume 1: Assessment and Cleanup Guidance." More specifically, Geosystem used the "Cleanup Factors for VOCs - Attenuation Factor Method" developed by Yue Rong and Roy Sakaida and included as Appendix A of the above-referenced publication. The application of this method to the site-specific data involves selecting an appropriate attenuation factor (AF) and modifying it to account for the depth to ground water and the types of vadose zone soil.

In cases where there are multiple VOC contaminants, RWQCB guidance suggests using an "overall average" AF, which is based on 29 common VOCs. From tables provided by the RWQCB, this dimensionless average value, termed AF_{max} , is 255. The modification for the depth to ground water is based on the vertical distance, D, between the point being considered and the water table. For the purposes of this evaluation, Geosystem considered contaminant concentrations at 1, 1.5, 5, 10, and 20 feet below grade. None of the soil samples collected at more than 20 feet below grade contain detectable concentrations of VOCs. At all of these five depths, the distance to ground water is greater than 150 feet. Therefore, there is no modification to AF_{max} and $AF_{max} = AF_D$. The modification for lithology is based on soil type for which the RWQCB has tabulated values. Based on the vadose zone soils consisting of sands and gravels, the total attenuation factor due to depth and lithology, $AF_T = AF_D/20$ or 12.75.

To calculate soil cleanup screening levels for individual VOCs, AF_T is multiplied by the maximum contaminant level (MCL) for that compound. This results in soil cleanup screening levels as follows:

Compound	<u>MCL</u> (µg/ℓ)	Soil Cleanup <u>Screening Level</u> (µg/kg)
PCE	5	63.75
TCA	200	2,550.0
1,1-DCE	6	63.75
TCE	5 .	76.50

The cleanup screening levels for TCA, 1,1-DCE, and TCE have not been exceeded in any of the soil samples collected from the site to date. The PCE screening level has been exceeded in only two of the soil samples analyzed to date; the 1.5- and 5-foot samples from Boring FB-1 in the former solvent storage area.

Using the approach presented in the RWQCB guidance and attributed to Hydro Geo Chem, Geosystem attempted to calculate the total concentrations of PCE in soil based on the reported PCE concentrations in soil gas. Using the average or typical values provided in the RWQCB guidance for the variables, Hydro Geo Chem's formula indicates that PCE concentrations in soil in μ g/kg should be 1.92 times higher than the corresponding soil gas concentrations in $\mu g/\ell$. However, this relationship is not supported by the available analytical data, which indicate that none of the soil samples collected from below 20 feet contained detectable concentrations of PCE or any other VOC. For example, Hydro Geo Chem's formula suggests that the soil sample collected at 40 feet below grade in the boring for Well NSG-1 should have contained 275 μ g/kg of PCE based on the 143 μ g/ ℓ of PCE detected in the soil gas sample collected at the same depth. However, PCE was not detected in this soil sample with a detection limit of $5 \mu g/kg$. While it is likely that some volatilization of PCE from the soil matrix has occurred during sampling and sample preparation, it is highly improbable that all of the PCE would volatilize. Geosystem's evaluation of soil cleanup screening levels, therefore, is based on the measured concentrations of VOCs in samples rather than on the results of calculations.

RECOMMENDATIONS

Although PCE concentrations in the uppermost 5 feet of the soil profile exceed the soil cleanup screening levels, Geosystem does not recommend any remedial measures. This recommendation is based on the following:

- o The area in which PCE concentrations exceed the soil cleanup screening level is very small. Specifically, it is limited to the upper 5 feet of the soil profile in the former solvent storage area.
- o No solvents of any description have been used at the site since Sprayco vacated it. As such, there is no ongoing release and VOC concentrations in soil are expected to attenuate naturally due to diffusion/dilution and biodegradation mechanisms.

o The surface of the impacted area is sealed with a high quality asphalt pavement, which is expected to preclude the infiltration of surface water, which could leach and transport constituents from near-surface soil to ground water.

Geosystem Consultants, Inc. appreciates the opportunity to be of service. If you have any questions regarding this report or require additional information, please do not hesitate to call.

Respectfully submitted,

GEOSYSTEM CONSULTANTS, INC.

Philip Miller, P.E. Project Manager

PM:sh

Attachments

cc: Mr. Joe Luera - RWQCB, Los Angeles Region (3 copies)

TABLES

TABLE 1

RESULTS OF SOIL SAMPLE ANALYSES

(All units are mg/kg - parts per million)

SAMPLE I.D.	DATE SAMPLED	TETRA CHLORO- ETHYLENE	1,1,2- TRICHOLORO- ETHANE	1,1,1- TRICHLORO- ETHANE	TRICHLORO- ETHYLENE	DICHLORO- METHANE (1)	ETHYL <u>BENZENE</u>	<u>TOLUENE</u>	TOTAL XYLENES	TOTAL PETROLEUM HYDROCARBONS
FB-1 1.5'	07/08/93	32	ND<0.8	ND<0.8	ND<0.8	ND<1.6	ND<0.8	ND<0.8	ND<0.8	2,800
5'	07/08/93	1.1	ND<0.02	0.037	ND<0.02 ⁽²⁾	1.8	ND<0.02	ND<0.02	0.083	180
10'	07/08/93	ND<0.001	0.0017	ND<0.001	ND<0.001	0.014	ND<0.001	ND<0.001	0.0012	9.0
FB-2 1'	07/08/93	0.25	ND<0.004	ND<0.004	ND<0.004	0.061	ND<0.004	ND<0.004	ND<0.004	31
5'	07/08/93	0.012	ND<0.001	ND<0.001	ND<0.001	0.018	ND<0.001	ND<0.001	0.0015	8.0
10'	07/08/93	0.005	ND<0.001	ND<0.001	ND<0.001	0.023	ND<0.001	ND<0.001	0.0015	14
FB-4 I'	08/02/93	0.021	ND<0.001	0.0014	ND<0.001	ND<0.002	0.0026	0.0029	0.015	22
5'	08/02/93	0.029	ND<0.001	ND<0.001	0.0019	ND<0.002	ND<0,001	ND<0.001	ND<0.001	13
10'	08/02/93	0.0034	ND<0.001	ND<0.001	ND<0.001	0.011	ND<0.001	ND<0.001	0.0013	20

NOTES: (1) Dichloroethene detected in lab blanks at concentrations ranging from ND<0.001 to 0.015 parts per million.

(2) Trichloroethylene tentatively detected at a concentration of 0.0079 parts per million.

TABLE 2

SUMMARY OF SOIL VAPOR SAMPLE RESULTS NEAR-SURFACE SOIL GAS SURVEY

(All units are in µg/l)

a.u.m.n.n	D.C.D.C.I.	D. 1000	1,1- DICHLORO-	1,1,1- TRICHLORO- ETHANE	TRICHLORO- ETHYLENE	TETRA- CHLORO- ETHYLENE
SAMPLE I.D.	<u>DEPTH</u> (feet)	<u>DATE</u>	ETHYLENE	ETHANE	ETHTERNE	<u> </u>
SG-V1	5	1/11/94	2.08	29.04	5.23	37.09
SG-V2	5	1/11/94	2.59	33.28	4.92	38.28
SG-V3	5	1/11/94	2.70	31.37	3.57	29.82
SG-V4	5	1/11/94	2.88	37.54	3.69	34.00
SG-V5	5	1/11/94	1.28	29.47	8.98	48.62
SG-V6	5	1/11/94	3.92	62.53	8.54	65.65
SG-V7	5	1/11/94	2.50	44.05	4.60	91.61
SG-V7.1	5	1/12/94	2.94	52.92	4.94	95.95
SG-V7.2	15	1/12/94	4.19	55,12	7.52	63.97
SG-V7.2 ^(l)	15	1/12/94	2.14	19.86	ND<1 (2)	12.30
SG-V7.3	5	1/12/94	1.95	36.51	2.52	32.74
SG-V8	5	1/11/94	2.78	46.01	8.91	57.00
SG-V9	5	1/11/94	ND<1	46.91	20.26	59.07
SG-V9.1	15	1/12/94	1.73	47.62	18.44	76.02
SG-V10	5	1/12/94	1.17	51.27	11.24	67.01
SG-V11	5	1/12/94	1.04	51,09	3.63	128.37
SG-V11.1	15	1/12/94	1.05	28,35	2.88	39.30
8G-V11.1 ⁽¹⁾	15	1/12/94	ND<1	17.51	1.91	33.87
SG-V12	5	1/12/94	2.60	58.60	6.67	97.91
SG-V12.1	15	1/12/94	3.32	52.59	5.08	52.98
SG-V12.1 (I)	15	1/12/94	ND<1	20.61	ND<1	6.02
SG-V12.2	5	1/12/94	0.98	22.53	2.61	73.49
SG-V13	5	1/12/94	1.35	43.93	4.79	78.19
SG-V14	5	1/12/94	1.27	46.92	4.02	85.62
SG-V15	5	1/12/94	ND <i< td=""><td>10.33</td><td>ND<1</td><td>6.21</td></i<>	10.33	ND<1	6.21
SG-V16	5	1/12/94	ND<1	11.85	ND<1	4.54
SG-V17	5	1/12/94	1.04	16.13	ND<1	4.45
SG-V18	5	1/12/94	3.07	26.78	ND<1	6.15
SG-V19	5	1/12/94	2.34	21.31	ND<1	5.52
SG-V20	5	1/12/94	2.58	24.69	ND<1	5.29
SG-V21	5	1/12/94	1.68	14.83	ND<1	5.14
SG-VBG (3)	5	1/12/94	1.18	10.34	ND<1	3.35

NOTES:

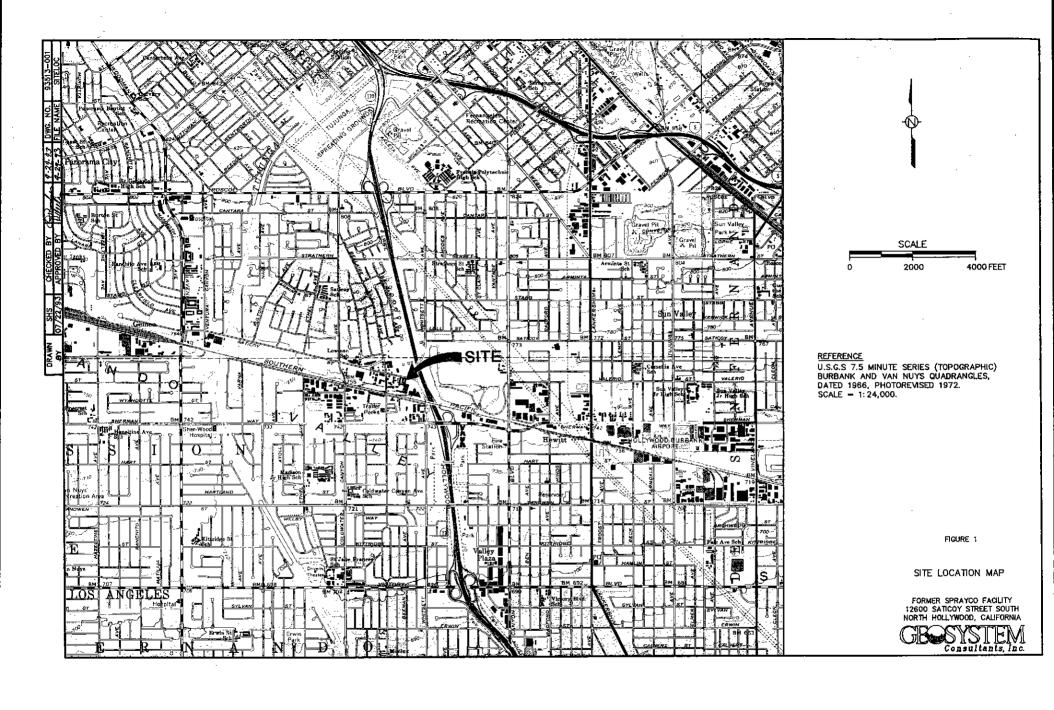
⁽¹⁾ Duplicate analysis.

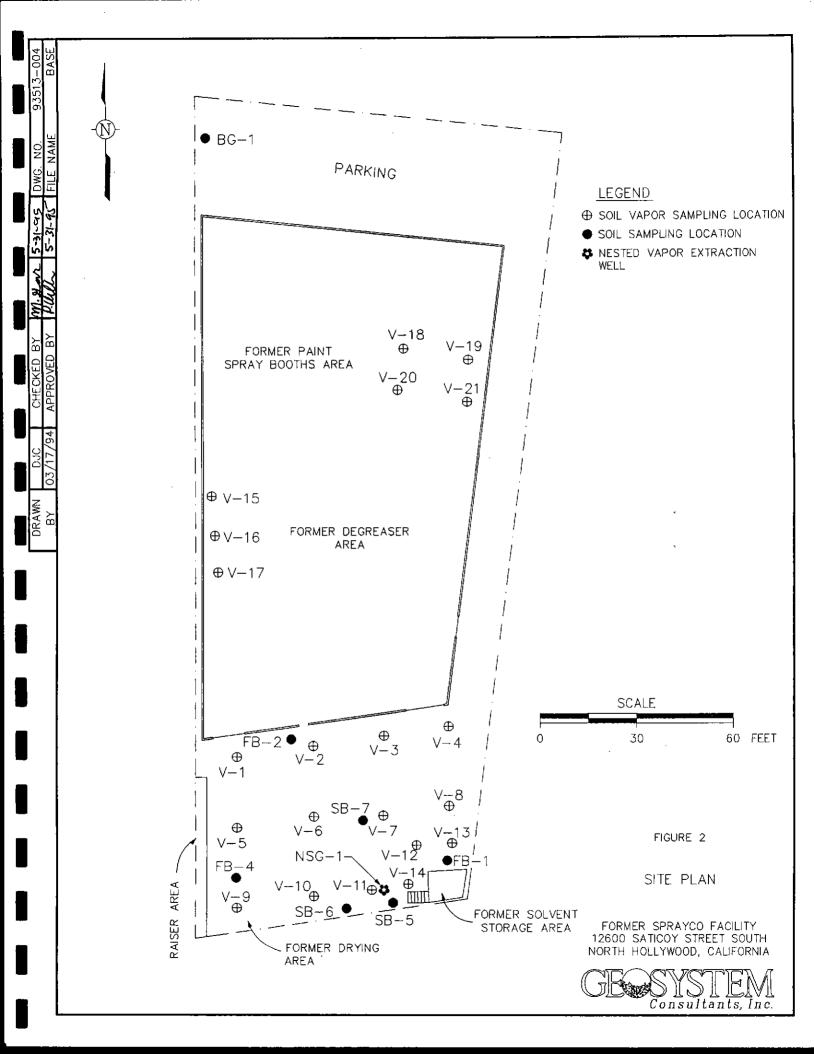
⁽²⁾ ND denotes Not Detected at detection limit indicated.

⁽³⁾ Background sample.

TABLE 3

SUMMARY OF SOIL VAPOR SAMPLE RESULTS NESTED VAPOR MONITORING WELL


(All units are $\mu g/\ell$)


SAMPLE PORT NO.	DATE	TETRA- CHLORO- ETHYLENE	1,1,1- TRICHLORO- ETHANE	1,1- DICHLORO- ETHYLENE	TRICHLORO- ETHYLENE
NPI-20	03/17/95	18	18	3	1
	04/20/95	47	ND<5	ND<5	ND<5
NPI-40	03/17/95	12	ND<1	ND<1	ND<1
	04/20/95	143	24	8	13
NPI-60	03/17/95	12	ND<1	ND<1	ND<1
	04/20/95	90	21	ND<1	8
NPI-80	03/17/95	3	ND<1	ND<1	ND<1
	04/20/95	. 49	8	2	11
NPI-100	03/17/95	8	7	2	ND<1
• • • •	03/17/95 ⁽¹⁾	43	89	23	14
	04/20/95	80	34	8	47

NOTE: (1) Tedlar bag sample.

FIGURES

APPENDIX A

BORING LOG AND WELL COMPLETION DETAILS NESTED SOIL VAPOR MONITORING WELL NSG-1

Nested Soil Vapor Monitoring Well NSG-1 Page 1 of 3 Project Number: 300951B Project: Former Sprayco Facility Field Geologist: Stuart M. Berge Site Location: 12600 Saticoy Street, North Hollywood, CA Drillers: Drill Line Date: 2/10/95 Times:0751-0958 Vapor Analyzer: Foxboro Century OVA Drilling Technique: CME-75 Equipped W/8" Dia. Auger Calibration Gas: Methane Sampling Technique: Standard California Split Spoon Sampler Driven 18" Into Undisturbed Soil Using a 140 lb. Slide Hammer With A 30" Drop Depth (ft) OVA (PPM) Sample Depth Sample Number Sample Number Lithologic uscs Graphic Log Soil Vapor Monitoring Well Description Construction Configuration 0 0-3" Asphalt AC Sampling Ports Traffic Rated Vault Concrete Sand - Light Yellowish Brown 6 4.5-Box 5 • 7.5 • 5 5 (10 YR 5/6), Medium To Very Coarse 6.0 SP Sand, Slightly Moist. 1/8" I.D. Teflon Tie Wrap Tube 21 9.5-1" Dia 10-3 Gravelly Sand - Yellowish Brown 10 23 -11.0 PVC (10 YR 5/4), Medium To Very Coarse 35 Blank Sand With Little Pebbles To 3 cm Hydrated Filled W/ Diameter, Slightly Moist. SW Bentonite Hydrated Medium Bentonite Grade 13 Hydrated 15= 1.5 14.5 15 30 Gravelly Sand - Yellowish Brown Bentonite 16.0 Teflon (10 YR 5/4), Coarse To Gravel To 0.5 25 Fine Soil cm Diameter, Little Medium Sand And Grade Vapor Trace Fine, Slightly Moist. Sample 8602 9318 (DUP) **Port** 13 20-19.5 NA Gravelly Sand - Yellowish Brown 25 21.0 (10 YR 5/4), As Above. 23 Grade #3 Sand 13 24.5 Sand - Yellowish Brown (10 YR 5/4), 25-2.0 SP 25 15 26.0 Medium Sand, Well Sorted, Slightly 19 Moist.

NSG-1

Page 2 of 3

Project: Former Sprayco Facility

Project Number: 300951B

Depth (ft)	Blow	OVA (PPM)	Sample Depth	Sample Number	Sample Location	Lithologic Description	SOSO	Graphic	Soil Vapor Monitoring Well Construction Configuration
30 -	24 50	1.0	29.5- 31.0			Gravelly Sand - Yellowish Brown (10 YR 5/6), Fine To Gravels To 1.0 cm Diameter, Very Well Graded, Slightly Moist.	sw		30
35	44 36 50	1.0	34.5- 41.0			Sand - Yellowish Brown (10 YR 5/6), Fine To Medium Sand, Slightly Moist.	sw		-35 -
40 -	27 33 36	1.0	39.5- 41.0	9319		Sand - Yellowish Brown (10 YR 5/4), Medium To Very Coarse Sand, Slightly Moist.		:	- 40 -
45 -	26 50	9.0	44.5- 45.5			Silty Gravelly Sand - Light Olive Brown (2.5 Y 5/3), Silts To Gravels To 1 cm Dlameter, Very Well Graded, Slightly Moist.			- 45 - 45
50 -	37 50/4"	2.0	49.5- 50.3			Silty Gravelly Sand - Grayish Brown (2.5 Y 5/2), As Above.	GΜ		- 50
55 -	50 50/5"	0.5	54.5- 55.4			Silty Gravelly Sand - Grayish Brown (2.5 Y 5/2), Pebbles To 3 cm Diameter, As Above.			- 55 - 35
60 -	60/3"	ND	59.5- 59.8			Sandy Gravel - Dark Grayish Brown (2.5 Y 4/2), Cobbles To 5 cm Diameter, Medium To Very Coarse Sand, Slightly Moist.	GW		-60
65 ~	55/6"	1.0	64.5- 65.0			Gravelly Sand - Olive Brown (2.5 Y 4/3), Fine To Very Coarse Sand With Some Cobbles To 5 cm Diameter, Slightly Moist.	SW		- 65 -

Nested Soil Vapor Monitoring Well NSG-1 Page 3 of 3

Project: Former Sprayco Facility

Project Number: 300951B

Depth (ft)	Blow	OVA (PPM)	Sample Depth	Sample Number	Sample Location	Lithologic Description	SOSU	Graphic	Soil Vapor Monitoring Well Construction Configuration
70 - -	50 50/2"	ND	69.5- 70.2	9320		Gravelly Sand - Olive Brown (2.5 Y 4/3), As Above.	sw		70
75	50 60/3"	ND	74.5- 75.3			Sandy Gravel - Very Dark Grayish Brown (2.5 Y 3/2), Gravel To 1.5 cm Diameter With Some Medium To Very Coarse Sand, Slightly Moist.	GW		- - 75
80 -	50/6"	ND	79.5- 80.0	9321		Gravelly Sand - Light Olive Brown (2.5 Y 5/2), Fine To Very Coarse, Pebbles To 1 cm Diameter, Slightly Moist.			- 80 -
85 -	60/3"	ND	84.5- 84.8			Gravelly Sand - Light Yellowish Brown (10 YR 5/6), Fine To Very Coarse Sand, Gravel To 5 cm Dlameter, Slightly Moist.			- 85 -
90 -	50 50/2*	ND	89.5- 90.2			Gravelly Sand - Dark Graylsh Brown (2.5 Y 3/2), Fine To Very Coarse Sand, Gravel To 5 cm Diameter, Slightly Moist.	sw		- - 90 -
95 -	15 36 42	ND	94.5- 96.0			Gravelly Sand - Yellowish Brown (10 YR 5/4), Medium To Very Coarse Sand, Gravels To 0.5 cm Diameter, Moist.			95
100 -	60/6"	ND	99.5- 100.0	9322	·	Gravelly Sand - Yellowish Brown (10 YR 5/4), As Above, However Large Cobble May Have Caused Sampler Refusal. Borehole Terminated @ 100' BGS.			100 T.D 100'
									- -
		:							- -

APPENDIX B

CERTIFICATES OF ANALYSES
WELL NSG-1 SOIL SAMPLE ANALYSES

Burbank Division 700 South Flower Street Burbank, CA 91502

Tel: (213) 849-6591 Fax: (818) 567-6477

DOHS Certificate Number: 1192 LACSD Lab I.D. Number: 10158

02/16/1995

Stuart Berge AeroVironment Inc. 222East Huntington Drive P.O. Box 5031 Monrovia, CA 91017-7131

Client Ref: 3009513 Date Received: 02/10/1995

Sample analysis for the project referred to above has been completed and results are located on attached pages.

Should you have questions regarding procedures or results, please feel welcome to contact our Client Services Representatives or the Laboratory Director.

Glann Daniels Project Manager

KB:rm
Attachments:
 Analytical Reports
 Chain of Custody Document

Client Net Acct No: 1024 NET Job No: 95.00175

Client Name: AeroVironment Inc. Client Ref.: 3009513

NET Job No.: 95.00175 Sample ID : 8602

Date Taken: 02/10/1995 Date Reported: 02/16/1995

Lab No. : 76746

Sample Matrix: SOIL

ANALYTES/METHOD METHOD 8240(GCMS, Solid)	METHOD	RESULTS/FLAG	S UNITS	R.L
Extraction Method		5030		
Date Extracted		5030		
Dilution Factor	8240	02-15-95		
Acetone	8240	1 ND	171 -	= 0
Benzene	8240	ND	ug/Kg	50
Bromodichloromethane	8240	ND	ug/Kg	5
Bromoform	8240	ND	ug/Kg	5
Bromomethane	8240	ND	ug/Kg	5
2-Butanone	8240	ND	ug/Kg	5
Carbon disulfide	8240	ND	ug/Kg	50
Carbon tetrachloride	8240	ND	ug/Kg	5
Chlorobenzene	8240	ND	ug/Kg	5
Chloroethane	8240	ND	ug/Kg	5
2-Chloroethyl vinyl ether	8240	ND ND	ug/Kg	5
Chloroform	8240	ND ND	ug/Kg	10
Chloromethane	8240	ND	ug/Kg ug/Kg	5 5
Dibromochloromethane	8240	ND	ug/Kg ug/Kg	5
1,2-Dichlorobenzene	8240	ND	ug/Kg	5
1,3-Dichlorobenzene	8240	ND	ug/Kg ug/Kg	5
1,4-Dichlorobenzene	8240	ND	ug/Kg	5
1,1-Dichloroethane	8240	ND	ug/Kg	5
1,2-Dichloroethane	8240	ND	ug/Kg	5
1,1-Dichloroethene	8240	ND	ug/Kg ug/Kg	5
cis-1,2-Dichloroethene	8240	ND	ug/Kg	5
trans-1,2-Dichloroethene	8240	ND	ug/Kg	5
1,2-Dichloropropane	8240	ND	ug/Kg	5
cis-1,3-Dichloropropene	8240	ND	ug/Kg	5
trans-1,3-Dichloropropene	8240	ND	ug/Kg	5
Ethyl benzene	8240	ND	ug/Kg	5
2-Hexanone	8240	ND	ug/Kg	50
Methylene chloride	8240	ND	ug/Kg	10
4-Methyl-2-pentanone	8240	ND	ug/Kg	50
Styrene	8240	ND	ug/Kg	5
1,1,2,2-Tetrachloroethane	8240	ND	ug/Kg	5
Tetrachloroethene	8240	47	ug/Kg	5
Toluene	8240	ND mm	ug/Kg	5
1,1,1-Trichloroethane	8240	ND	ug/Kg	5
1,1,2-Trichloroethane	8240	ND .	ug/Kg	5
Trichloroethene	8240	ND	ug/Kg	5
Trichlorofluoromethane	8240	ND	ug/Kg	5
Vinyl acetate	8240	ND	ug/Kg	10
Vinyl chloride	8240	ND	ug/Kg	5
Xylenes (total)	8240	ИД	ug/Kg	5
SURROGATE RESULTS			a,a	_
Spk Conc Toluene-d8	8240	50	ug/Kg	
Toluene-d8	8240	99	% Rec.	
Spk Conc Bromofluorobenzene	8240	50	ug/Kg	
Bromofluorobenzene	8240	106	% Rec	
ND: Not Detected at the Report	ing Limit	(RL), if a dilu	tion factor	is reported

Client Ref.: 3009513

NET Job No.: 95.00175

Date Taken: 02/10/1995 Date Reported: 02/16/1995

Sample ID : 8602

Lab No. : 76746

Sample Matrix: SOIL

ANALYTES/METHOD Spk Conc 1,2-DCA-d4 1,2-Dichloroethane-d4	METHOD 8240 8240	RESULTS/FLAGS 50 102	UNITS ug/Kg % Rec.	R.L
--	------------------------	----------------------------	--------------------------	-----

Client Ref.: 3009513

NET Job No.: 95.00175

Sample ID : 9319 Lab No. : 76747 Date Taken: 02/10/1995
Date Reported: 02/16/1995

ab No. : 76747 Sample Matrix: SOIL

ANALYTES/METHOD	METHOD	RESULTS/FLAGS	UNITS	R.L
METHOD 8240(GCMS, Solid) Extraction Method				
		5030		
Date Extracted	1	02-15-95		
Date Analyzed		02-15-95		
Dilution Factor	8240	1		
Acetone	8240	ND	ug/Kg	50
Benzene	8240	ND	ug/Kg	5
Bromodichloromethane	8240	ND	ug/Kg	5
Bromoform	8240	ND	ug/Kg	5
Bromomethane	8240	ND	ug/Kg	5
2-Butanone	8240	ND	ug/Kg	50
Carbon disulfide	8240	ND	ug/Kg	5
Carbon tetrachloride	8240	ND	ug/Kg	5
Chlorobenzene	8240	ND	ug/Kg	5
Chloroethane	8240	ND	ug/Kg	5
2-Chloroethyl vinyl ether	8240	ND	ug/Kg	10
Chloroform	8240	ND	ug/Kg	5
Chloromethane	8240	ND	ug/Kg	5
Dibromochloromethane	8240	ND	ug/Kg	5
1,2-Dichlorobenzene	8240	ND	ug/Kg	5
1,3-Dichlorobenzene	8240	ND .	ug/Kg	5
1,4-Dichlorobenzene	8240	ND	ug/Kg	5
1,1-Dichloroethane	8240	ND	ug/Kg	5
1,2-Dichloroethane	8240	ND	ug/Kg	5
1,1-Dichloroethene	8240	ND	ug/Kg	5
cis-1,2-Dichloroethene	8240	ND	ug/Kg	5
trans-1,2-Dichloroethene	8240	ND	ug/Kg	5
1,2-Dichloropropane	8240	ND	ug/Kg	5
cis-1,3-Dichloropropene	8240	ND	ug/Kg ug/Kg	5
trans-1,3-Dichloropropene	8240	ND	ug/Kg ug/Kg	5
Ethyl benzene	8240	ND		5 5·
2-Hexanone	8240	ND	ug/Kg	
Methylene chloride	8240	ND	ug/Kg	50
4-Methyl-2-pentanone	8240	ND	ug/Kg	10
Methyl-tert-butyl-ether	8240		ug/Kg	50
Styrene Styrene	8240	ND	ug/Kg	10
1,1,2,2-Tetrachloroethane	8240	ND	ug/Kg	5
Tetrachloroethene		ND	ug/Kg	5
Toluene	8240 8240	ND	ug/Kg	5
1.1.1-Trichloroethane		ND ·	ug/Kg	5
1,1,2-Trichloroethane	8240 8240	ND	ug/Kg	5
Trichloroethene	8240	ND	ug/Kg	5
Trichlorofluoromethane		ND	ug/Kg	5
Vinyl acetate	8240 8240	ND ND	ug/Kg	5
Vinyl acecace Vinyl chloride	8240	ND	ug/Kg	10
Xylenes (total)	8240	ND	ug/Kg	5
SURROGATE RESULTS	8240	ND	ug/Kg	5
Spk Conc Toluene-d8	0040		4.0	
Toluene-d8	8240	50	ug/Kg	
ND: Not Detected at the Repor	8240	99	% Rec.	

Client Ref.: 3009513

NET Job No.: 95.00175

Date Taken: 02/10/1995 Date Reported: 02/16/1995

Sample ID : 9319

Lab No. : 76747

Sample Matrix: SOIL

ANALYTES/METHOD Spk Conc Bromofluorobenzene Bromofluorobenzene Spk Conc 1,2-DCA-d4	METHOD 8240 8240 8240	RESULTS/FLAGS 50 103 50	UNITS ug/Kg % Rec. ug/Kg	R.L	_
1,2-Dichloroethane-d4	8240 8240	101	ug/Kg % Rec.		

Client Name: AeroVironment Inc. Client Ref.: 3009513

NET Job No.: 95.00175

Date Taken: 02/10/1995 Date Reported: 02/16/1995

Sample ID : 9320

Lab No. : 76748

Sample Matrix: SOIL

ANALYTES/METHOD	METHOD	RESULTS/FLAGS	UNITS	R.L
METHOD 8240 (GCMs, solid)				•
Extraction Method		5030		
Date Extracted		02-15-95		
Dilution Factor	8240	1		
Acetone	8240	ND	ug/Kg	50
Benzene	8240	ND	ug/Kg	5
Bromodichloromethane	8240	ND	ug/Kg	5
Bromoform	8240	ND	ug/Kg	5
Bromomethane	8240	ND	ug/Kg	5
2-Butanone	8240	ND	ug/Kg	50
Carbon disulfide	8240	ND	ug/Kg	5
Carbon tetrachloride	8240	ND	ug/Kg	5
Chlorobenzene	8240	ND	ug/Kg	5
Chloroethane	8240	ND	ug/Kg	5
2-Chloroethyl vinyl ether	8240	ND	ug/Kg	10
Chloroform	8240	ND	ug/Kg	5
Chloromethane	8240	ND	ug/Kg	5
Dibromochloromethane	8240	ND	ug/Kg	5
1,2-Dichlorobenzene	8240	ND	ug/Kg	5
1,3-Dichlorobenzene	8240	ND	ug/Kg ug/Kg	5
1,4-Dichlorobenzene	8240	ND		5
1,1-Dichloroethane	8240	ND	ug/Kg	
1,2-Dichloroethane	8240	ND	ug/Kg	5
1,1-Dichloroethene	8240	ND	ug/Kg	5
cis-1,2-Dichloroethene	8240	ND	ug/Kg	5
trans-1,2-Dichloroethene	8240		ug/Kg	5
1,2-Dichloropropane	8240	ND	ug/Kg	5
cis-1,3-Dichloropropene		ND	ug/Kg	5
trans-1,3-Dichloropropene	8240	ND	ug/Kg	5
Ethyl benzene	8240	ND	ug/Kg	5
2-Hexanone	8240	ND	ug/Kg	5
	8240	ND	ug/Kg	50
Methylene chloride	8240	ND	ug/Kg	10
4-Methyl-2-pentanone	8240	ND	ug/Kg	50
Styrene	8240	ИD	ug/Kg	5
1,1,2,2-Tetrachloroethane	8240	ND	ug/Kg	5
Tetrachloroethene	8240	ND	ug/Kg	5
Toluene	8240	ND	ug/Kg	5
1,1,1-Trichloroethane	8240	ND	ug/Kg	5
1,1,2-Trichloroethane	8240	ND	ug/Kg	5
Trichloroethene	8240	ND	ug/Kg	5
Trichlorofluoromethane	8240	ND	ug/Kg	5
Vinyl acetate	8240	ND	ug/Kg	10
Vinyl chloride	8240	ND	ug/Kg	5
Xylenes (total)	8240	ND	ug/Kg	5
			· 57 - · 7	-
SURROGATE RESULTS			1	
Spk Conc Toluene-d8	8240	50	ua/Ka	
	8240 8240		ug/Kg % Rec.	
Spk Conc Toluene-d8		50 99 50	ug/Kg % Rec. ug/Kq	

Client Ref.: 3009513

NET Job No.: 95.00175

Date Taken: 02/10/1995 Date Reported: 02/16/1995

Sample ID : 9320

Lab No. : 76748

Sample Matrix: SOIL

ANALYTES/METHOD Spk Conc 1,2-DCA-d4 1,2-Dichloroethane-d4	METHOD 8240 8240	RESULTS/FLAGS 50 101	UNITS ug/Kg % Rec.	R.L
--	------------------------	----------------------------	--------------------------	-----

Client Ref.: 3009513

NET Job No.: 95.00175

Date Taken: 02/10/1995 Date Reported: 02/16/1995

Sample ID : 9321 Lab No. : 76749

Sample Matrix: SOIL

ANALYTES/METHOD	METHOD	RESULTS/FLAGS	UNITS	R.L
METHOD 8240 (GCMS, Solid)				
Extraction Method		5030		
Date Extracted		02-15-95		
Dilution Factor	8240	1		
Acetone	8240	ND	ug/Kg	50
Benzene	8240	ND	ug/Kg	5
Bromodichloromethane	8240	ND	úg/Kg	5
Bromoform	8240	ND	ug/Kg	5
Bromomethane	8240	ND	ug/Kg	5
2-Butanone	8240	ND	ug/Kg	50
Carbon disulfide	8240	ND	ug/Kg	5
Carbon tetrachloride	8240	ND	ug/Kg	5
Chlorobenzene	8240	ND	ug/Kg	5
Chloroethane	8240	ND	ug/Kg	5
2-Chloroethyl vinyl ether	8240	ND	ug/Kg	10
Chloroform	8240	ND	ug/Kg	5
Chloromethane	8240	ND	ug/Kg	5
Dibromochloromethane	8240	ND	ug/Kg	5
1,2-Dichlorobenzene	8240	ND	ug/Kg	5
1,3-Dichlorobenzene	8240	ND	ug/Kg	5
1,4-Dichlorobenzene	8240	ND	ug/Kg ug/Kg	5
1,1-Dichloroethane	8240	ND	ug/Kg ug/Kg	5
1,2-Dichloroethane	8240	ND		5
1,1-Dichloroethene	8240	ND	ug/Kg	5
cis-1,2-Dichloroethene	8240	ND	ug/Kg	5 5
trans-1,2-Dichloroethene	8240	ND	ug/Kg	
1,2-Dichloropropane	8240	ND	ug/Kg	5
cis-1,3-Dichloropropene	8240	ND	ug/Kg	5
trans-1,3-Dichloropropene	8240	ND	ug/Kg	5
Ethyl benzene	8240	ND	ug/Kg	5
2-Hexanone	8240	ИD	ug/Kg	5
Methylene chloride	8240		ug/Kg	50
4-Methyl-2-pentanone		ND	ug/Kg	10
Styrene	8240	ND	ug/Kg	50
1,1,2,2-Tetrachloroethane	8240	ND	ug/Kg	5
Tetrachloroethene	8240	ND	ug/Kg	5
Toluene	8240	ND	ug/Kg	5
	8240	ND	ug/Kg	5
1,1,1-Trichloroethane	8240	ND	ug/Kg	5
1,1,2-Trichloroethane	8240	ND	ug/Kg	5
Trichloroethene	8240	ND	ug/Kg	5
Trichlorofluoromethane	8240	ND	ug/Kg	5
Vinyl acetate	8240	ND	ug/Kg	10
Vinyl chloride	8240	ND	ug/Kg	5
Xylenes (total)	8240	ИD	ug/Kg	5
SURROGATE RESULTS	0015			
Spk Conc Toluene-d8	8240	50	ug/Kg	
Toluene-d8	8240	100	% Rec.	
Spk Conc Bromofluorobenzene	8240	50	ug/Kg	
Bromofluorobenzene	8240	103	% Rec.	

Client Ref.: 3009513

NET Job No.: 95.00175

Date Taken: 02/10/1995 Date Reported: 02/16/1995

Sample ID : 9321

Lab No. : 76749

Sample Matrix: SOIL

ANALYTES/METHOD Spk Conc 1,2-DCA-d4 1,2-Dichloroethane-d4	METHOD 8240 8240	RESULTS/FLAGS 50 99	UNITS ug/Kg % Rec.	R.L

Client Ref.: 3009513

NET Job No.: 95.00175

Sample ID : 9322

Lab No. : 76750 Date Taken: 02/10/1995 Date Reported: 02/16/1995

Sample Matrix: SOIL

ANALYTES/METHOD	METHOD	RESULTS/FLAGS	UNITS	R.L
METHOD 8240 (GCMS, Solid)		Inde	- VIII.10	N.14
Extraction Method		5030		
Date Extracted		02-15-95		
Dilution Factor	8240	1		
Acetone	8240	ND	ug/Kg	50
Benzene	8240	ND	ug/Kg	5
Bromodichloromethane	8240	ND	ug/Kg	5
Bromoform	8240	ND	ug/Kg	5
Bromomethane	8240	ND	ug/Kg	5
2-Butanone	8240	ND	ug/Kg	50
Carbon disulfide	8240	ND	ug/Kg	5
Carbon tetrachloride	8240	ND	ug/Kg	5
Chlorobenzene	8240	ND	ug/Kg	5
Chloroethane	8240	ND	ug/Kg	5
2-Chloroethyl vinyl ether	8240	ND	ug/Kg	10
Chloroform	8240	ND	ug/Kg	5
Chloromethane	8240	ND	ug/Kg	5
Dibromochloromethane	8240	ND	ug/Kg	5
1,2-Dichlorobenzene	8240	ND	ug/Kg	5
1,3-Dichlorobenzene	8240	ND	ug/Kg	5
1,4-Dichlorobenzene	8240	ND	ug/Kg	5
1,1-Dichloroethane	8240	ND	ug/Kg	5
1,2-Dichloroethane	8240	ND	ug/Kg	5
1,1-Dichloroethene	8240	ND	ug/Kg	5
cis-1,2-Dichloroethene	8240	ND	ug/Kg	5
trans-1,2-Dichloroethene	8240	ND	ug/Kg	5
1,2-Dichloropropane	8240	ND	ug/Kg	5
cis-1,3-Dichloropropene	8240	ND	ug/Kg	5
trans-1,3-Dichloropropene	8240	ND	ug/Kg	5
Ethyl benzene	8240	ND	ug/Kg	5
2-Hexanone	8240	ND	ug/Kg	50
Methylene chloride	8240	ND	ug/Kg	10
4-Methyl-2-pentanone	8240	ND	ug/Kg	50
Styrene	8240	ND	ug/Kg	5
1,1,2,2-Tetrachloroethane	8240	ND	ug/Kg	5
Tetrachloroethene	8240	ND	ug/Kg	5
Toluene	8240	ND	ug/Kg	5
1,1,1-Trichloroethane	8240	ND	ug/Kg	5
1,1,2-Trichloroethane	8240	ND	ug/Kg	5
Trichloroethene	8240	ND	ug/Kg	5
Trichlorofluoromethane	8240	ND	ug/Kg	5
Vinyl acetate	8240	ND	ug/Kg	10
Vinyl chloride	8240	ND	ug/Kg	5
Xylenes (total)	8240	ND	ug/Kg	5
SURROGATE RESULTS			-	
Spk Conc Toluene-d8	8240	50	ug/Kg	
Toluene-d8	8240	98	% Rec.	
Spk Conc Bromofluorobenzene	8240	50	ug/Kg	
Bromofluorobenzene	8240	104	% Rec.	
ND: Not Detected at the Report	ing Limit	(RL), if a dilu	tion factor	is reported

ND: Not Detected at the Reporting Limit (RL), if a dilution factor is reported the R.L. must be multiplied by the dilution factor to obtain actual R.L.

Client Ref.: 3009513

NET Job No.: 95.00175

Date Taken: 02/10/1995 Date Reported: 02/16/1995

Sample ID : 9322

Lab No. : 76750

Sample Matrix: SOIL

ANALYTES/METHOD Spk Conc 1,2-DCA-d4 1,2-Dichloroethane-d4	METHOD 8240 8240	RESULTS/FLAGS 50 99	UNITS ug/Kg % Rec.	R.L	
---	------------------------	---------------------------	--------------------------	-----	-------------

ND: Not Detected at the Reporting Limit (RL), if a dilution factor is reported the R.L. must be multiplied by the dilution factor to obtain actual R.L.

Client Ref.: 3009513

NET Job No.: 95.00175

Date Taken: 02/10/1995 Date Reported: 02/16/1995

Sample ID : 9318

Lab No. : 76751 Sample Matrix: SOIL

ANALYTES/METHOD	METHOD	RESULTS/FLAGS	UNITS	R.L
METHOD 8240 (GCMs, Solid)				
Extraction Method		5030		
Date Extracted		02-15-95		
Dilution Factor	8240	1		
Acetone	8240	ND	ug/Kg	50
Benzene	8240	ND	ug/Kg	5
Bromodichloromethane	8240	ND	ug/Kg	5
Bromoform	8240	ND	ug/Kg	5
Bromomethane	8240	ND	ug/Kg	5
2-Butanone	8240	ND	ug/Kg	50
Carbon disulfide	8240	ND	ug/Kg	5
Carbon tetrachloride	8240	ND	ug/Kg	5
Chlorobenzene	8240	ND	ug/Kg	5
Chloroethane	8240	ND	ug/Kg	5
2-Chloroethyl vinyl ether	8240	ND	ug/Kg	10
Chloroform	8240	ND	ug/Kg	5
Chloromethane	8240	ИD	ug/Kg	5
Dibromochloromethane	8240	ND	ug/Kg	5
1,2-Dichlorobenzene	8240	ND	ug/Kg	5
1,3-Dichlorobenzene	8240	ND	ug/Kg	5
1,4-Dichlorobenzene	8240	ИD	ug/Kg	5
1,1-Dichloroethane	8240	ND	ug/Kg	5
1,2-Dichloroethane	8240	ND	ug/Kg	5
1,1-Dichloroethene	8240	ND	ug/Kg	5
cis-1,2-Dichlòroethene	8240	ND	ug/Kg	5
trans-1,2-Dichloroethene	8240	ND	ug/Kg	5
1,2-Dichloropropane	8240	ND	ug/Kg	5
cis-1,3-Dichloropropene	8240	ND	ug/Kg	5
trans-1,3-Dichloropropene	8240	ИD	ug/Kg	5
Ethyl benzene	8240	ND	ug/Kg	5
2-Hexanone	8240	ND	ug/Kg	50
Methylene chloride	8240	ND	ug/Kg	10
4-Methyl-2-pentanone	8240	ND	ug/Kg	50
Styrene	8240	ND		5
1,1,2,2-Tetrachloroethane	8240	ND	ug/Kg	
Tetrachloroethene	8240	7	ug/Kg	5
Toluene	8240	ND	ug/Kg	5
1,1,1-Trichloroethane	8240	ND	ug/Kg	5
1,1,2-Trichloroethane	8240	ND	ug/Kg	5
Trichloroethene	8240	ND	ug/Kg	5
Trichlorofluoromethane	8240	ND	ug/Kg	5
Vinyl acetate	8240	· ·	ug/Kg	5
Vinyl chloride	8240	ND ND	ug/Kg	10
Xylenes (total)	8240	ND ND	ug/Kg	5
SURROGATE RESULTS	0240	ND	ug/Kg	5
Spk Conc Toluene-d8	8240	50	/1/ ~	
Toluene-d8	8240	100	ug/Kg	
Spk Conc Bromofluorobenzene	8240	. 20	% Rec.	
Bromofluorobenzene	8240	102	ug/Kg	
D: Not Detected at the Report		104	% Rec.	

ND: Not Detected at the Reporting Limit (RL), if a dilution factor is reported the R.L. must be multiplied by the dilution factor to obtain actual R.L.

Client Ref.: 3009513

NET Job No.: 95.00175

Date Taken: 02/10/1995 Date Reported: 02/16/1995

Sample ID : 9318

Lab No. : 76751

Sample Matrix: SOIL

1,2-Dichloroethane-d4 8240 100 % Rec.	ANALYTES/METHOD Spk Conc 1,2-DCA-d4 1,2-Dichloroethane-d4	METHOD 8240 8240	RESULTS/FLAGS 50 100	ug/Kg	R.L	·-
---------------------------------------	--	------------------------	----------------------------	-------	-----	----

ND: Not Detected at the Reporting Limit (RL), if a dilution factor is reported the R.L. must be multiplied by the dilution factor to obtain actual R.L.

QUALITY CONTROL REPORT

AeroVironment Inc. 222East Huntington Drive P.O. Box 5031 Monrovia, CA 91017-7131 Stuart Berge

02/16/1995

NET Job Number: 95.00175

Enclosed is the Quality Control data for the following samples submitted to NET, Inc. - Burbank for analysis:

Sample	Sample Description	Date	Date
Number		Taken	Received
76746	8602	02/10/1995	02/10/1995
76747	9319	02/10/1995	02/10/1995
76748	9320	02/10/1995	02/10/1995
76749	9321	02/10/1995	02/10/1995
76750	9322	02/10/1995	02/10/1995
76751	9318	02/10/1995	02/10/1995

This Quality Control report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

OUALITY CONTROL REPORT CONTINUING CALIBRATION VERIFICATION

NET Job Number: 95.00175

02/16/1995

Analyte	Rụn Batch Number	Run Batch Flags	CCV True Concentration	Concentration Found	Percent Recovery
METHOD 8240(GCMS, Solid)					
Bromoform	238		50.0	51.5	103.0
Chlorobenzene	238		50.0	52.3	104.6
Chloroform	238		50.0	51,6	103.2
Chloromethane	238		50.0	51.5	103.0
1,1-Dichloroethane	238		50.0	52.3	104.6
1,1-Dichloroethene	238		50.0	54.4	108.8
1,2-Dichloropropane	238		50.0	53.7	107.4
Ethyl benzene	238		50.0	53.3	106.6
Methyl-tert-butyl-ether	238		50	51.5	103.0
1,1,2,2-Tetrachloroethane	238		50.0	51.2	102.4
Toluene	238		50.0	53.5	107.0
Vinyl chloride	238		50.0	52.6	105.2

CCV - Continuing Calibration Verification

QUALITY CONTROL REPORT BLANKS

02/16/1995

NET Job Number: 95.00175

	Prep	Run			
	Batch	Batch	Blank		
Analyte	Number	Number	Analysis	Flags	Units
METHOD 8240(GCMS, Solid)					
Acetone		238	ND		ug/Kg
Benzene		238	ND		ug/Kg
Bromodichloromethane		238	ND		ug/Kg
Bromoform		238	ND		ug/Kg
Bromomethane '		238	ND		ug/Kg
2-Butanone		238	ND		ug/Kg
Carbon disulfide		238	ND		ug/Kg
Carbon tetrachloride		238	ND		ug/Kg
Chlorobenzene		238	ND		ug/Kg
Chloroethane		238	ND		ug/Kg
2-Chloroethyl vinyl ether		238	ND		ug/Kg
Chloroform		238	ND		ug/Kg
Chloromethane		238	ND		ug/Kg
Dibromochloromethane		238	ND		ug/Kg
1,2-Dichlorobenzene		238	ND		ug/Kg
1,3-Dichlorobenzene		238	ND		ug/Kg
1,4-Dichlorobenzene		238	ND		ug/Kg
1,1-Dichloroethane		238	ND		ug/Kg
1,2-Dichloroethane		238	ND		ug/Kg
1,1-Dichloroethene		238	ND		ug/Kg
cis-1,2-Dichloroethene		238	ND		ug/Kg
trans-1,2-Dichloroethene		238	ND		ug/Kg
1,2-Dichloropropane		238	ND		ug/Kg
cis-1,3-Dichloropropene		238	ND		ug/Kg
trans-1,3-Dichloropropene		238	ND		ug/Kg
Ethyl benzene		238	ND		ug/Kg
2-Hexanone		238	ND		ug/Kg
Methylene chloride		238	ND		ug/Kg
4-Methyl-2-pentanone		238	ND		ug/Kg
Methyl-tert-butyl-ether		238	ND		ug/Kg
Styrene		238	ND		ug/Kg
1,1,2,2-Tetrachloroethane		238	ND		ug/Kg

Advisory Control Limits for Blanks:

Metals/Wet Chemistry/ Conventionals/GC - all compounds should be less than the Reporting Limit.

GC/MS - Semi-Volatiles - all compounds should be less than the Reporting Limit except for phthalates which should be less than 5 times the reporting limit.

Volatiles - Toluene, methylene chloride, acetone and chloroform should be less than 5 times the Reporting Limit. All other volatile compounds should be less than the Reporting Limit.

QUALITY CONTROL REPORT BLANKS

NET Job Number: 95.00175

02/16/1995

	Prep	Run			
	Batch	Batch	Blank		
Analyte	Number	Number	Analysis	Flags	Units
Tetrachloroethene		238	ND		ug/Kg
Toluene		238	ND		ug/Kg
1,1,1-Trichloroethane		238	ND		ug/Kg
1,1,2-Trichloroethane		238	ND		ug/Kg
Trichloroethene		238	ND		ug/Kg
Trichlorofluoromethane		238	ND		ug/Kg
Vinyl acetate		238	ND		ug/Kg
Vinyl chloride		238	ND		ug/Kg
Xylenes (total)		238	ND		ug/Kg
Spk Conc Toluene-d8		238	50		ug/Kg
Toluene-d8		238	99		% Rec.
Spk Conc Bromofluorobenzene		238	50		ug/Kg
Bromofluorobenzene		238	106		% Rec.
Spk Conc 1,2-DCA-d4		238	50		ug/Kg
1,2-Dichloroethane-d4		238	100		% Rec.

Advisory Control Limits for Blanks:

Metals/Wet Chemistry/ Conventionals/GC - all compounds should be less than the Reporting Limit.

GC/MS - Semi-Volatiles - all compounds should be less than the Reporting Limit except for phthalates which should be less than 5 times the reporting limit.

Volatiles - Toluene, methylene chloride, acetone and chloroform should be less than 5 times the Reporting Limit. All other volatile compounds should be less than the Reporting Limit.

QUALITY CONTROL REPORT LABORATORY CONTROL STANDARD

NET Job Number: 95.00175

02/16/1995

	Prep Batch	Run Batch	LCS True	LCS Concentration	LCS	Flags/ RPD	Units
Analyte	Number	Number	Concentration		% Recovery	%	Onics
METHOD 8240(GCMs, solid)					,		
Benzene		238	25	25,8	103,2		ug/Kg
Chlorobenzene		238	25	22.8	91.2		ug/Kg
1,1-Dichloraethene		238	25	27.8	111.2		ug/Kg
Methyl-tert-butyl-ether		238	25	27.2	108.8		ug/Kg
Toluene		238	25	24.8	99.2		ug/Kg
Trichloroethene		238	25	22.4	89.6		ug/Kg
Toluene-d8		238	25	24.6	98.4		% Rec.
Bromofluorobenzene		238	25	26.6	106.4		% Rec.
1,2-Dichloroethane-d4		238	25	24.9	99.6		% Rec.

LCS - Laboratory Control Standard

Advisory Control Limits - Inorganics - LCS recovery should be 80 - 120%.

QUALITY CONTROL REPORT MATRIX SPIKE/MATRIX SPIKE DUPLICATE

NET Job Number: 95.

95.00175

02/16/1995

Analyte	Prep Batch Number	Run Batch Number	Matrix Spike Result	Sample Result	Spike/ MSD Amount	Units	Percent Recovery	MSD Result	Percent Recovery	MS/MSD RPD	Flags
METHOD 8240(GCMS,Solid)											
Benzene '		238	19.6	NĐ	25	ug/Kg	78.4	20.3	81.2	3.5	
Chlorobenzene		238	20.0	ND	25	ug/Kg	80.0	21.5	86.0	7.2	
1,1-Dichloroethene		238	24.5	ND	25	ug/Kg	98.0	23.8	95.2	2.9	
Toluene		238	18.4	ND	25	ug/Kg	73.6	19.2	76.8	4.3	mm
Trichloroethene		238	20.1	ND	25	ug/Kg	80.4	20.5	82.0	2.0	

MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

QUALITY CONTROL REPORT DUPLICATES

NET Job Number: 95.00175

02/16/1995

	Prep	Run	•				
	Batch	Batch	Original	Duplicate			
Analyte	Number	Number	Analysis	Analysis	Units	Flags	RPD
METHOD 8240(GCMS, Solid)							
Acetone		238	ND	ND	ug/Kg		
Benzene		238	ND	ND	ug/Kg ug/Kg		
Bromodichloromethane		238	ND	ND	ug/Kg ug/Kg		
Bromoform		238	ND	ND	ug/Kg		
Sromomethane		238	ND	ND	ug/Kg ug/Kg		
2-Butanone		238	ND	ND	ug/Kg		
Carbon disulfide		238	ND	ND	ug/Kg		
Carbon tetrachloride		238	ND	ND	ug/Kg		
Chlorobenzene		238	ND	ND	ug/Kg		
Chloroethane		238	ND	ND	ug/Kg		
2-Chloroethyl vinyl ether		238	ND	ND	ug/Kg		
Chloroform		238	ND	ND	ug/Kg		
Chloromethane		238	ND	ND	ug/Kg		
Dibromochloromethane		238	ND	ND	ug/Kg		
1,2-Dichtorobenzene		238	ND	ND	ug/Kg		
1,3-Dichlorobenzene		238	ND	ND	ug/Kg		
1,4-Dichlorobenzene		238	ND	ND	ug/Kg		
1,1-Dichloroethane		238	ND	ND	ug/Kg		
1,2-Dichloroethane		238	ND	ND	ug/Kg		
1,1-Dichloroethene		238	ND	ND	ug/Kg		
cis-1,2-Dichloroethene		238	ND	ND	ug/Kg		
trans-1,2-Dichlorgethene		238	ND	ND	ug/Kg		
1,2-Dichloropropane		238	ND	ND	ug/Kg ⊔g/Kg		
cis-1,3-Dichloropropene		238	ND	ND	ug/Kg		
trans-1,3-Dichloropropene		238	ND	ND	ug/Kg		
Ethyl benzene		238	ND	ND	ug/Kg		
2-Hexanone		238	ND	ND	ug/Kg		
Methylene chloride		238	ND	ND	ug/Kg		
4-Methyl-2-pentanone		238	ND	ND	ug/Kg		
Styrene		238	ND	ND	ug/Kg		
1,1,2,2-Tetrachloroethane		238	ND	ND	ug/Kg		
Tetrachloroethene		238	ND	ND	ug/Kg		
Toluene		238	ND	ND	ug/Kg		
1,1,1-Trichloroethane		238	ND	ND	ug/Kg		
1,1,2-Trichloroethane		238	ND	ND	ug/Kg		
					-97 118		

NOTE: Spikes and Duplicates may not be samples from this job.

RPD - Relative Percent Difference

Advisory Control Limits for Duplicates - RPD should be less than 20.

QUALITY CONTROL REPORT DUPLICATES

NET Job Number: 95.00175

02/16/1995

Analyte .	Prep Batch Number	Run Batch Number	Original Analysis	Duplicate Analysis	Units	Flags	RPD
Trichloroethene		238	ND	ND	ug/Kg		
Trichlorofluoromethane		238	ND	ND	ug/Kg		
Vinyl acetate		238	ND	ND	ug/Kg		
Vinyl chloride		238	ND	ND	ug/Kg		
Xylenes (total)		238	ND	ND	ug/Kg		
SURROGATE RESULTS		238	- a a,	•-			

NOTE: Spikes and Duplicates may not be samples from this job.

RPD - Relative Percent Difference

Advisory Control Limits for Duplicates - RPD should be less than 20.

CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD LOS ANGELES REGION

LABORATORY REPORT FORM

Laboratory Name: 1 Address: 700 SOUTE Telephone: (213)	H FLOWER ST.	, Burbank, C	A 91502	
Laboratory Certif: (ELAP) No.: 1192		xpiration Dat	ce: <u>05/31/199</u>	6
Laboratory Directo	or's Name (Pi	rint): Rick §	Schrynemeecke	ers
Laboratory Directo				
Client:AeroVironme Project Name:30095 Project No:95.0017	ent Inc.	· · · · · · · · · · · · · · · · · · ·		
Analytical Method: (Box One)	EPA 502.1	EPA 503.1	EPA 502.2	EPA 524.1 EPA 524.2
	EPA 601	EPA 602		EPA 624.2
*	EPA 8010	EPA 8020	EPA 8021	EPA 8240
				EPA 8260
Other	·			
Date Sampled: Date Received: Date Reported:				02/10/1995 02/10/1995 02/16/1995
Sample Matrix:				SOIL
Extraction Method: Extraction Materia				EPA 5030 REAGENT WA
Chain of Custody R Sample Condition:	eceived:	Yes		
Sample Headspac Sample Containe	e Descriptio r Material:	n (%): 0 BRASS	<u>.</u>	

ANALYTICAL TEST RESULT*

Reporting Unit (Circle One): ug/kg ug/L

DATE ANALYZED			02/15/95	02/15/95	02/15/95
DATE EXTRACTE	ED		02/15/95	02/15/95	01/15/95
DILUTION FACTOR	}		1	1	1
LAB SAMPLE I.D),	-	76746	76747	76748
CLIENT SAMPLE I.D).		8602	9319	9320
COMPOUNDb	MDL	МВ			
Bromobenzene	NA	NA	NA	NA	NA
Bromodichloromethane	0.9	ND	ND	ND	ND
Bromoform	1.4	ND	ND	ND	ND
Bromomethane	0.6	ND	ND	ND	ND
Carbon tetrachloride	0.6	ND	ND	ND	ND
Chloroethane	0.8	ND	ND	ND	ND
Chloroform	0.7	ND	ND	ND	ND
1-Chlorohexane	NA	NA	NA	NA	NA
Chloromethane	0.7	ND	ND	ND	ND
Dibromochloromethane	1.2	ND	ND	ND	ND
Dibromomethane	NA	NA	NA	NA	NA .
Dichlorodifluoromethane	NA	NA	NA	NA	NA .
1,1-Dichloroethane (1,1-DCA)	0.7	ND	ND	ND	ND
1,2-Dichloroethane (1,2-DCA)	1.3	ND	ND	ND	ND
1,1-Dichloroethylene (1,1-DCE)	0.6	ND	ND	ND	ND
trans-1,2-Dichloroethylene	0.6	ND	ND	ND	ND
Dichloromethane	1.5	ND	ND	ND	ND ,
1,2-Dichloropropane	0.7	ND	ND	ND	ND
cis-1,3-Dichloropropylene	1.5	ND	ND	ND	ND
		<u> </u>	L		

COMPOUNDb	MDL	МВ	76746	76747	76748
trans-1,3-Dichloropropylene	0.7	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane	NA	NA	NA	NA	NA
1,1,2,2-Tetrachloroethane	2.0	ND	ND	ND	ND
Tetrachloroethylene (PCE)	0.5	ND	47	ND	ND
1,1,1-Trichloroethane (111-TCA)	0.6	ND	ND	ND	ND
1,1,2-Trichloroethane (112-TCA)	2.0	ND	ND	ND	ND
Trichloroethylene (TCE)	0.9	ND	ND	ND	ND
1,2,3-Trichloropropane	NA	NA	NA	NA	NA
Trichlorofluoromethane	0.3	ND	ND	ND	ND
Vinyl chloride	0.8	ND	ND	ND	ND
Benzene					-
	0.6	ND	ND	ND	ND
Chlorobenzene	1.0	ND	ND	ND	ND
1,2-Dichlorobenzene	0.4	ND	ND	ND	ND
1,3-Dichlorobenzene	0.4	ND	ND	ND	ND
1,4-Dichlorobenzene	0.5	ND	ND	ND	ND
Ethyl benzene	0.7	ND	ND	ND	ND
Toluene	1.1	ND	ND	ND	ND
m,p-Xylenes	NA	NA	NA	NA	NA
o-Xylene	NA	NA	NA	NA	NA
Xylenes (Total)	2.0	ND	ND	ND	ND
Acetone	3.4	ND	ND	ND	ND
	NA	NA	NA	NA NA	NA ".
	NA	NA NA	NA	NA NA	NA NA
	NA	NA	NA	NA NA	NA NA

COMPOUND	MDL	МВ	76746	76747	76748
n-Butylbenzene	NA	NA	NA	NA	NA
sec-Butylbenzene	NA	NA	NA	NA	NA
tert-Butylbenzene	NA	NA	NA	NA	NA
2-Chloroethylvinyl ether	0.7	ND	ND	ND	ND
2-Chlorotoluene	NA	NA	NA	NA	NA
4-Chlorotoluene	NA	NA	NA	NA	NA
Dichlorodifluoromethane	NA	NA	NA	NA	NA
cis-1,2-Dichloroethylene	0.6	ND	ND	ND	ND
1,3 Dichloropropane	NA	NA	NA	NA	NA
2,2-Dichloropropane	NA	NA	NA	NA	NA
1,1-Dichloropropylene	NA	NA	NA	NA	NA
Ethylene dibromide (EDB)	NA	NA	NA	NA '	NA
Hexachlorobutadiene	NA	NA	NA	NA	NA
Isopropylbenzene	NA	NA	NA	NA	NA
p-Isopropyltoluene	NA	NA	NA	NA	NA
Methyl Ethyl Ketone	NA	NA	NA	NA	NA
Methyl Isobutyl Ketone	NA ·	NA	NA	NA	NA
Naphthalene	NA	NA	NA	NA	NA
n-Propylbenzene	0.3	ND	ND	ND	ND
Stryrene	NA	NA	NA	NA	NA
1,2,3-Trichlorobenzene	NA	NA	NA	NA	NA
1,2,4-Trichlorobenzene	NA	NA	NA	NA	NA
1,2,4-Trimethylbenzene	NA	NA	NA	NA	NA
1,3,5-Trimethylbenzene	NA	NA	NA	NA	NA .
1,1,2-Trichloro-trifluoroethane	NA	NA	NA	NA	NA

				76746	76747	76748
SURROGATE	SPK CONC	ACP%	MB %RC	%RC	%RC	%RC
Toluene-d8	25	70-130	99	99	99	99
Bromofluorobenzene	25	70-130	106	106	103	104
1,2-Dichloroethane-d4	25	70-130	100	102	101	101

^{* =} Report Any Value > MDL; b = Listed Compounds Are Ordered by Laboratory AnalyticalMethods Halogenated, Aromatic, then Remaining Compounds Identified by GC/MS,

SPK CONC = Spiking Concentration; ACP % = Acceptable Range of Percent; %RC = % Recovery

MDL = Method Detection Limit; MB = Method Blank; MD = Not Detected (Below MDL); NA = Not Analyzed

ANALYTICAL TEST RESULT*

Reporting Unit (Circle One): ug/kg ug/L

DATE ANALYZED)		02/15/95	02/15/95	02/15/95
DATE EXTRACT	ED		02/15/95	02/15/95	02/15/95
DILUTION FACTO)R		1	1	1
LAB SAMPLE I.	D.		76749	76750	76751
CLIENT SAMPLE I.	D.		9321	9322	9318
COMPOUNDb	MDL	MB	·		
Bromobenzene	NA	NA	NA	NA	NA
Bromodichloromethane	0.9	ND	ND	ND	ND
Bromoform	1.4	ND	ND	ND	ND
Bromomethane	0.6	ND	ND	ND	ND
Carbon tetrachloride	0.6	ND	ND	ND	ND
Chloroethane	0.8	ND	ND	ND	ND
Chloroform	0.7	ND	ND	ND	ND
1-Chlorohexane	NA	NA	NA	NA	NA
Chloromethane	0.7	ND	ND	ND	ND
Dibromochloromethane	1.2	ND	ND	ND	ND
Dibromomethane	NA	NA	NA	NA	NA
Dichlorodifluoromethane	NA	NA	NA	NA	NA
1,1-Dichloroethane (1,1-DCA)	0.7	ND	ND	ND	ND
1,2-Dichloroethane (1,2-DCA)	1.3	ND	ND	ND	ND
1,1-Dichloroethylene (1,1-DCE)	0.6	ND	ND	ND	ND
trans-1,2-Dichloroethylene	0.6	ND	ND	ND	ND
Dichloromethane	1.5	ND	ND	ND	ND
1,2-Dichloropropane	0.7	ND	ND	ND	ND
cis-1,3-Dichloropropylene	1.5	ND	ND	ND	ND

сомроиирр	MDL	MB	76749	76750	76751
trans-1,3-Dichloropropylene	0.7	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane	NA	NA	NA	NA	NA
1,1,2,2-Tetrachloroethane	2.0	ND	ND	ND	ND
Tetrachloroethylene (PCE)	0.5	ND	ND	ND	7
1,1,1-Trichloroethane (111-TCA)	0.6	ND	ND	ND	ND
1,1,2-Trichloroethane (112-TCA)	2.0	ND	ND	ND	ND
Trichloroethylene (TCE)	0.9	ND	ND	ND	ND
1,2,3-Trichloropropane	NA	NA	NA	NA	NA NA
Trichlorofluoromethane	0.3	ND	ND	ND	ND
Vinyl chloride	0.8	ND	ND	ND	ND
Benzene	0.6	115		-	
Chlorobenzene	0.6	ND	ND	ND	ND
	1.0	ND	ND	ND	ND
1,2-Dichlorobenzene	0.4	ND	ND	ND	ND
1,3-Dichlorobenzene	0.4	ND	ND	ND	ND
1,4-Dichlorobenzene	0.5	ND	ND	ND	ND
Ethyl benzene	0.7	ND	ND	ND	ND
Toluene	1.1	ND	ND	ND	ND
m,p-Xylenes	NA	NA	NA	NA NA	NA
o-Xylene	NA	NA	NA	NA	NA
Xylenes (Total)	2.0	ND	ND	ND	ND
Acetone					
	3.4	ND	ND	ND	ND
	NA	NA	NA	NA	NA
	NA	NA	NA	NA	NA
Bromochloromethane	NA	NA	NA	NA	NA

COMPOUND	MDL	MB	76749	76750	76751
n-Butylbenzene	NA	NA	NA	NA	NA
sec-Butylbenzene	NA	NA	NA	NA	NA
tert-Butylbenzene	NA	NA	NA	NA	NA NA
2-Chloroethylvinyl ether	0.7	ND	ND	ND	ND
2-Chlorotoluene	NA	NA	NA	NA	NA
4-Chlorotoluene	NA	NA	NA	NA NA	NA
Dichlorodifluoromethane	NA	NA	NA	NA	NA
cis-1,2-Dichloroethylene	0.6	ND	ND	ND	ND
1,3 Dichloropropane	NA	NA	NA	NA	NA
2,2-Dichloropropane	NA	NA	NA	NA	NA
1,1-Dichloropropylene	NA	NA	NA	NA	NA
Ethylene dibromide (EDB)	NA	NA	NA	NA	NA
Hexachlorobutadiene	NA	NA	NA	NA	NA
Isopropylbenzene	NA	NA	NA	NA	NA NA
p-Isopropyltoluene	NA	NA	NA	NA	NA.
Methyl Ethyl Ketone	NA	NA	NA	NA	NA NA
Methyl Isobutyl Ketone	NA	NA	NA	NA	NA
Naphthalene	NA	NA	NA	NA	NA
n-Propylbenzene	0.3	ND	ND	ND	ND
Stryrene	NA	NA	NA	NA	NA
1,2,3-Trichlorobenzene	NA	NA	NA	NA	NA
1,2,4-Trichlorobenzene	NA	NA	NA	NA	NA
1,2,4-Trimethylbenzene	NA	NA	NA	NA	NA
1,3,5-Trimethylbenzene	NA	NA	NA	NA	NA
1,1,2-Trichloro-trifluoroethane	NA	NA	NA	NA	NA NA

				76749	76750	76751
SURROGATE	SPK CONC	ACP%	MB %RC	%RC	%RC	%RC
Toluene-d8	25	70-130	99	100	98	100
Bromofluorobenzene	25	70-130	106	103	104	102
1,2-Dichloroethane-d4	25	70-130	100	99	99	100

^{* =} Report Any Value ≥ MDL; b = Listed Compounds Are Ordered by Laboratory AnalyticalMethods Halogenated, Aromatic, then Remaining Compounds Identified by GC/MS,

SPK CONC = Spiking Concentration; ACP % = Acceptable Range of Percent; %RC = % Recovery
MDL = Method Detection Limit; MB = Method Blank; MD = Not Detected (Below MDL); NA = Not Analyzed

Reporting Unit (Circle One) : ug/kg ug/L

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

DATE PERFORMED: 02/15/1995

BATCH #:238 LAB SAMPLE I.D.:76746

ANALYTE	SPK CONC	MS	% MS	MSD	% MSD	RPD	ACP %MS	ACP RPD
Benzene	25	19.6	78.4	20.3	81.2	3.5	70-130	25
Chlorobenzene	25	20.0	80.0	21.5	86.0	7.2	70-130	25
1,1-Dichloroethene	25	24.5	98.0	23.8	95.2	2.9	70-130	25
Toluene	25	18.4	73.6	19.2	76.8	4.3	70-130	25
Trichloroethene	25	20.1	80.4	20.5	82.0	2.0	70-130	25

Reporting Unit (Circle One) : ug/kg ug/L

Laboratory Quality Control Check Sample

DATE PERFORMED: 02/15/1995

BATCH #:238 LAB SAMPLE I.D.

ANALYTE	SPK CONC	RESULT	%RECOVERY	ACP %
Benzene	25	25.8	103.2	80-120
Chlorobenzene	25	22.8	91.2	80-120
1,1-Dichloroethene	25	27.8	111.2	80-120
Methyl-tert-butyl-ether	25	27.2	108.8	80-120
Toluene	25	24.8	99.2	80-120
Trichloroethene	25	22.4	89.6	80-120

ANALYST: ___ DATE: 02/15/1995

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\15FEB95\V8348.D Vial: 2 Acq On : 15 Feb 95 10:07 am Sample : 50 PPB8240 STD V1467 Operator: XU

Inst : 5970 - In

Misc : 02-15-95 Multiplr: 1.00

Method : C:\HPCHEM\1\METHODS\RVOA.M

Title : EPA 8240

Last Update : Tue Feb 14 20:56:49 1995 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 25% Max. Rel. Area : 150%

	Compound	AvgRF	CCRF	%Dev	Area%	Dev(Min)
1 I		1.000	1.000	0.0	139	0.04
2 P	- · · · - + - + - + - + - + - + - + - +	1.263	1.302	-3.0	135	0.06
3 C	<u> </u>	1.677	1.763	-5.1	146	0.06
4	Bromomethane	1.667	1.726	-3.5	140	0.07
5	Chloroethane	1.048	1.098	-4.7	141	0.06
6	Trichlorfluoromethane	4.374	4.336	0.9	134	0.05
	M 1,1-Dichloroethene	1.492	1.624	-8.9	144	0.05
8	Acrolein	0.020	0.020	-3.0	109	0.02
9	Freon113	3.131	3.942	-25.9#	228#	0.04
10	Carbon disulfide	4.759	4.696	1.3	135	0.06
11	Acetone	0.311	0.390	-25.7#	153#	0.00
12	Methylene chloride	1.880	1.949	-3.7	144	0.04
13	Acrylonitrile	0.249	0.264	-6.1	120	0.03
14	Trans-1,2-Dichloroethene	1.802	1.964	-9.0	148	0.04
15	MTBE	4.133	4.254	-2.9	135	0.00
16 P		3.742	3.914	-4.6	142	0.04
17	Cis-1,2-Dichloroethene	1.672	1.761	-5.3		0.04
18 C		4.163	4.300	-3.3		0.04
19 S	,	1.649		-3,2		0.04
20	1,2-Dichloroethane	2.541	2.543	-0.1	138	0.05
21	1,4-Diflurobenzene	1.000	1.000	0.0	129	0.04
22	Vinyl acetate	0.625	0.677	-8.4	135	0.04
23	2-Butanone	0.031	0.034	-9.6	141	0.03
24	1,1,1-Trichloroethane	0.899	0.992	-10.3	142	0.04
25	Carbontetrachloride	0.829	0.877	-5.8	135	0.04
26 M	· -	1.457	1.658	-13.8	144	0.05
27 M		0.595	0.663	-11.4	141	0.04
28 C	1,2-Dichlorpropane	0.575	0.618	-7.5	135	0.04
29	Bromodichloromethane	0.963	1.016	-5.5	132	0.04
30	2-Chloroethyl vinyl ether	0.495	0.525	-6.1	133	0.04
31	Cis-1,3-Dichlorpropene	0.894	0.964	-7.8	134	0.04
32	Trans-1,3-Dichoropropene	0.619	0.652	-5.3	129	0.04
33	1,1,2-Trichloroethane	0.440	0.481	-9.1	134	0.04
34	Dibromochloromethane	0.725	0.757	-4.3	127	0.03
35 P	Bromoform	0.469	0.483	-2.9	117	0.04
36	Chlorobenzene-d5	1.000	1.000	0.0	129	0.04
37	4-Methyl-2-Pentanone	0.526	0.491	6.6	120	0.04
38 S	Toluene-d8 (surr)	1.419	1.331	6.2	125	0.03
39 MC	Toluene	1.376	1.472	-7.0	143	0.04
				,	T-13	0.04

^{(#) =} Out of Range

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\15FEB95\V8348.D

Vial: 2 Operator: XU

Acq On : 15 Feb 95 10:07 am Sample : 50 PPB8240 STD V1467

Inst : 5970 - In

Misc : 02-15-95

Multiplr: 1.00

Method : C:\HPCHEM\1\METHODS\RVOA.M
Title : EPA 8240
Last Update : Tue Feb 14 20:56:49 1995 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 25% Max. Rel. Area : 150%

- -	Compound	AvgRF	CCRF	%Dev	Area%	Dev(Min)
40 41 42 PM 43 C 44 45 46 47 S 48 P 49 50 51	Tetrachloroethene 2-Hexanone Chlorobenzene Ethylbenzene M+P-xylene O-xylene Styrene 4-Bromofluorobenzene (surr) 1,1,2,2,-Tetrachloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	0.655 0.329 1.531 0.848 1.046 0.916 1.496 0.894 0.816 1.272 1.321	0.704 0.329 1.602 0.904 1.130 0.973 1.549 0.943 0.836 1.058 1.095 0.952	-7.5 0.0 -4.6 -6.6 -8.0 -6.2 -3.5 -5.5 -2.5 16.8 17.1 18.9	139 124 134 137 138 132 125 129 119 98 97	0.03 0.04 0.03 0.04 0.03 0.03 0.03 0.04 0.03 0.04 0.03

TOL 75.00113

Response Factor Report 5970 - In

Method : C:\HPCHEM\1\METHODS\RVOA.M 570 Vendor Accusts Title : EPA 8240 Last Update : Tue Feb 14 20:56:49 1995 570 Log# V1467 run time 2-13-95 Response via : Initial Calibration Calibration Files 50 =V8310.D 15 =V8308.D 100 =V8320.D 150 =V8321.D 200 =V8309.D Compound 50 15 100 150 200 Bromochloromethane -----ISTD-----I 1) I Chloromethane 1.336 1.417 1.201 1.162 1.200 1.3

Vinyl Chloride 1.678 1.993 1.547 1.504 1.663 1.7

Bromomethane 1.705 1.994 1.529 1.470 1.640 1.7

Chloroethane 1.079 1.313 0.933 0.903 1.015 1.0

Trichlorfluoromethane 4.482 5.524 3.862 3.714 4.288 4.4 2) P 8.57# 3) C 11.44 4) 12.26 5) 15.60 6) 16.32 1,1-Dichloroethene 1.559 1.740 1.383 1.360 1.417 1.5 Acrolein 0.026 0.016 0.019 0.019 0.019 Freonl13 2.396 3.861 3.406 3.564 2.430 3.1 7) CM 10.64 8) 18.55 9) 21.58 10) 17.56 11) 17.73 12) 24.57 13) 18.03 14) 11.17 15) 4.363 4.577 3.978 3.703 4.045 4.1 3.816 4.306 3.405 3.374 3.810 3.7 1.685 1 915 1 509 1 533 1 717 1 7 MTBE 8.26 16) P 1,1-Dichloroethane 10.15# Cis-1,2-Dichloroethen 1.685 1.915 1.509 1.533 1.717 1.7 17) 9.79 Chloroform 4.137 4.822 3.772 3.736 4.349 4.2 18) C 10.78 1,2-Dichloroethane-d4 1.767 1.689 1.591 1.553 1.644 1.6 19) S 5.10 1,2-Dichloroethane 2.552 2.898 2.333 2.222 2.701 20) 2.5 10.75 21) 22) 13.78 23) 1,1,1-Trichloroethane 0.902 1.071 0.811 0.787 0.923 0.9 12.40 Carbontetrachloride 0.839 0.950 0.748 0.731 0.876 0.8 11.00 Benzene 1.484 1.703 1.337 1.283 1.477 1.5 11.20 Trichloroethene 0.605 0.694 0.547 0.522 0.606 0.6 11.19 1,2-Dichlorpropane 0.590 0.657 0.536 0.508 0.586 0.6 9.94 Bromodichloromethane 0.990 1.134 0.865 0.825 1.001 1.0 12.71 0.68 24.88 24) 25) 26) M 27) M 28) C 29) 30) Cis-1,3-Dichlorpropen 0.925 1.023 0.814 0.776 0.934 31) 0.9 11.14Trans-1,3-Dichoroprop 0.649 0.699 0.563 0.526 0.655 32) 0.6 11.55 1,1,2-Trichloroethane 0.461 0.509 0.405 0.370 0.457 0.4 33) 12.29 34) Dibromochloromethane 0.766 0.843 0.652 0.608 0.757 0.7 13.02 35) P Bromoform 0.531 0.444 0.444 0.401 0.525 0.5 12.11# Chlorobenzene-d5 -----ISTD-----ISTD-----36) 4-Methyl-2-Pentanone 0.528 0.596 0.484 0.436 0.586 0.5 12.89 37) 38) S Toluene-d8 (surr) 1.376 1.396 1.444 1.475 1.407 1.4 2.80 39) MC 1.330 1.691 1.255 1.226 1.379 1.4 Toluene Tetrachloroethene 0.650 0.773 0.600 0.585 0.665 0.7 13.52 40) 11.32

Response Factor Report 5970 - In

Method : C:\HPCHEM\1\METHODS\RVOA.M

Title : EPA 8240

Last Update : Tue Feb 14 20:56:49 1995

Response via : Initial Calibration

Calibration Files

50 =V8310.D 15 =V8308.D 100 =V8320.D

150 = V8321.D 200 = V8309.D

	Compound	50	15	100	150	200	Avg	%RSD
41) 42) PM 43) C 44) 45) 46) 47) S 48) P 49) 50) 51)	2-Hexanone Chlorobenzene Ethylbenzene M+P-xylene O-xylene Styrene 4-Bromofluorobenzene 1,1,2,2,-Tetrachloroe 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	1.543 0.850 1.055 0.946 1.593 0.938 0.908 1.391 1.456	1.754 0.989 1.249 1.061 1.630 0.701 0.778 1.248 1.307	0.307 1.413 0.776 0.948 0.828 1.350 0.938 0.787 1.201 1.243 1.090	1.382 0.758 0.931 0.803 1.304 0.930 0.722 1.171 1.208	1.563 0.867 1.050 0.942 1.605 0.961 0.885 1.349 1.391	0.3 1.5 0.8 1.0 0.9 1.5 0.9 0.8 1.3 1.3	13.97 9.63# 10.77 12.11 11.33 10.45 12.11 9.52# 7.44 7.78 9.23

CHAIN-OF-CUSTODY RECORD

222 East Huntin	r o Vironmen ngton Drive, P.O. B ornia 91017–7131			S	end report	to th	e atte	ntion	of:	_5	10	HRT	v		242	GK.	_	Νō		ଃ91	
Telephone 818/ FAX 818/359-9	357-9983						L.					Analyse	es Rec	uired		_	-			TIAB	RESULTS-
	30095					/			Γ,				-						De.	WATE	R BEALD
P.O. #		<u> </u>	 -			l /.	\mathcal{L}_{i}	<u>,</u> /	$\widehat{\mathcal{L}}$	´ /	/5	z /		• /				/_	, <u>}</u>	FORN	4-
	FTU ABOT	3526	<u> </u>	_ 		Volatile	Voleni		828 828 828		5015 tral/Aci	5/8/270 VPCB						S Samp	Bullion		
Lab Sample Number	AV Sample Number	Date sampled	Time sampled	Type* see key below	Number of containers	Halogen 601/80	Aromatic 601/801	Tagent SCING	######################################	Modified Modified	Beselve GC/MS g	Pesticides/PCB			/			Hazardou Special h	\vdash	R	RESULTS - RESULTS - RESULT
કલ્ફ્ટ	N567-1-20'	2/12/8	089	50				X											7/	6746	
9319	NSG-1-40	\ \	J325	1	j			X												4747	·
9320	NSG-1-72"		0909				-	X												٠	
	2156-1-80		0935					X												6748	· · · · · · · · · · · · · · · · · · ·
9322	N56- HOO		0458				 -	X												4749 750	<u> </u>
9318	MSG-1-DUP							X						-	-					751	· =
					-																
																	<u> </u>				
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											· ;-			_					
									-					_				•		·	
	Signature		<u> </u>		Prin	t Nam	9		7			(Compa	ıny		i		Dat	e	Time	
Relinquished by	XIX.	h	9_	59	JART	.75	1=1	6E		AL	0.5 V	1200			7	•		2/10	Jor	245	*KEY AQ-Aqueous
Received by		.).			_					1 - 3	<u> </u>				<i>1</i>		\dashv	-//	7,7 >	613	NA-Nonaqueous
Relinquished by																· · · ·		<u> </u>			SL-Sludge
Received by					_		-						\dashv		\dashv		GW-Groundwater				
Relinquished by		- \ ,			<u> </u>								寸		\dashv		SO-Soil OT-Other				
Received by Lab	oratory Lig	ny //	Let	541	ANE P	PRK	E.72			NE	7	·						2/19	95	245	PE-Petroleum

WHITE COPY - AV PROJECT MANAGER

CANARY COPY - LABORATORY

PINK COPY-CHRON FILE Dec. @ 7°C

APPENDIX C

SOIL GAS SAMPLING AND ANALYSES MARCH 17, 1995

MAR 3 1 1993

fI

March 28, 1995

EST 1244

Mr. Phil Miller Geosystem Consultants 18218 McDurmott East, Suite G Irvine, California 92714

Subject:

Field Analyses Results of Soil Gas Samples from Nested Probes

Former Sprayco Site

12600 Saticoy Street South, North Hollywood, California

Dear Mr. Miller:

Environmental Support Technologies, Inc. (EST) is pleased to submit field analyses results for soil gas samples collected from nested probes at the former Sprayco site located at 12600 Saticoy Street South in North Hollywood, California.

Results of the soil gas sample analyses performed on March 17, 1995 are summarized in Table 1. Some factors that affect the distribution of volatile organic compounds (VOCs) in the subsurface are listed in Appendix A. Field analyses results, quality assurance/quality control data and three point calibration data for soil gas samples are included in Appendix B. Analyses results and chain of custody documentation for the TedlarTM bag sample are provided in Appendix C.

Soil gas samples were analyzed on-site using a gas chromatograph (GC) equipped with a photo-ionization detector (PID) and an electrolytic conductivity detector (ELCD) placed in series. The GC configuration used a megabore capillary column to allow resolution and quantitation of EPA Method 8010/8020 compounds, including halogenated and aromatic hydrocarbons. Soil gas sample collection and analysis were performed in accordance with Los Angeles Regional Water Quality Control Board (LARWQCB) protocols dated March 8, 1994. Details of EST's standard methods and procedures for nested soil gas sampling probes are provided in Appendix D.

Compound concentrations detected in the TedlarTM bag confirmation sample were higher than concentrations detected in the field. This may be the result of variations in the gas stream during probe purging.

Should you have any questions or comments, please contact me at (714) 457-9664.

Sincerely,

Environmental Support Technologies, Inc.

KLA. Thomson

Kirk A. Thomson, R.G., R.E.A. Project Manager/Principal Hydrogeologist

cc:

EST Project File

TABLE 1 SUMMARY OF FIELD ANALYSES RESULTS FOR SOIL GAS SAMPLES COLLECTED FROM NESTED PROBES

FORMER SPRAYCO SITE 12600 SATICOY STREET, NORTH HOLLYWOOD, CALIFORNIA

File: 1244T1.WK3

March 24, 1995

PROBE NUMBER	SAMPLING EVENTS	PROBE DEPTH (ft)	DCE (ug/L)	TCA (ug/L)	TCE (ug/L)	PCE (ug/L)
NP1-20	1	20	3	18	1	18
NP1-40	2	40	ND<1	ND<1	ND<1	12
NP1-60	1	60	ND<1	ND<1	ND<1	12
NP1-80	1	80	ND<1	ND<1	ND<1	3
NP1-100	3	100	2	7	ND<1	8
NP1-100	1 (TEDLAR BAG)	100	23 (5.8 ppm(v))	89 (16 ppm(v))	14 (2.5 ppm(v))	43 (6.2 ppm(v))

(ft) = feet below grade

(ug/L) = micrograms per liter

DCE = 1,1 - Dichloroethene

TCA = 1,1,1-Trichloroethane

TCE = Trichloroethene

PCE = Tetrachloroethene

ND = Not Detected; Constituent is below reportable limit of quantitation

ppm(v) = parts per million by volume

NOTE = Values reported are the highest detected within calibration range.

APPENDICES

Appendix A

FACTORS AFFECTING THE GAS-PHASE DISTRIBUTION OF VOCs IN THE SUBSURFACE

Soil and groundwater contamination by volatile organic compounds (VOCs) can often be detected by analyzing trace gases in soil just below ground surface. This technique is possible because many VOCs will volatilize and move by molecular diffusion away from source areas toward regions of lower concentrations. A gas phase concentration gradient from the source to adjacent areas is established.

The following factors affect the transport and gas phase distribution of VOCs in the subsurface.

- 1. The liquid-gas partitioning coefficient of the compounds of interest (the "volatility" of the compound).
- 2. The vapor diffusivity, which is a measure of how quickly an individual compound "spreads out" within a volume of gas.
- 3. Retardation of the individual compounds as they migrate in the soil gas. Retardation may be due to degradation, adsorption on the soil matrix, tortuosity of the soil profile, or entrapment in unconnected pores.
- 4. The presence of impeding layers, wetting fronts of freshwater, or perched water tables, between the regional water table and ground surface.
- 5. The presence of soil moisture around man-made structures such as clarifiers and sumps may suppress volatilization and diffusion of VOCs resulting in false negative or low soil gas concentrations.
- 6. The presence of contaminants from localized spills or in the ambient air.
- 7. Movement of soil gas in response to barometric pressure changes.
- 8. The preferential migration of gas through zones of greater permeability (e.g. natural lithologic variation or back-fill of underground utilities).

At most sites, many of these factors are unknown or poorly understood. Because of this uncertainty, soil gas sampling should be used in conjunction with other site-specific data.

Appendix B

FIELD ANALYSES RESULTS FOR HALOGENATED AND AROMATIC HYDROCARBONS

(INCLUDING CALIBRATION REPORTS, QUALITY CONTROL REPORTS, AND EXPLANATION OF METHOD DETECTION LIMITS)

TABLE B-1 HALOGENATED AND AROMATIC HYDROCARBONS IELD ANALYSES RESULTS FOR SOIL GAS SAMPLES

FIELD ANALYSES RESULTS FOR SOIL GAS SAMPLES SUBJECT SITE, NORTH HOLLYWOOD, CALIFORNIA

25-TARGET COMPOUND LIST PID/ELCD #1 - 3/17/95

	<u> </u>	<u> </u>							FILE XXX	ASGRP.WK3
SAMPLE IC	<u> </u>		NP1-100	NP1-100	NP1-100	NP1-80	NP1-60	NP1-40	NP1-20	NP1-40
DATE	_		3/17/95	3/17/95	3/17/95	3/17/95	3/17/95	3/17/95	3/17/95	3/17/95
TIME			10:11	10:30	10:48	11:23	11:42	11:58	12:18	12:38
INJECTION VOLU	ME (ul)		500	500	500	500	500	500	 	
PURGE VOLUME	(ml)		500	1000	1500	400	300	200	+	
VACUUM (in. I	lg)		ND	ND	ND	ND	ND	ND	ND	ND ND
DILUTION FAC	TOR		1,0	1.0	1.0		 		 	
COMMENTS		1	 	 	 		 	1.0		10.0
	RT	ARF	<u> </u>	<u> </u>					<u> </u>	1
Dichlorodifluromethane	3.25	2.95E+08	0.00E+00 ND	0.00E+00 ND	0.00E+00			0.00E+00		
STATE OF THE PARTY	0.25	2.032 700	0.00E+00	0.00E+00	ND 0.00E+00	0.00E+00	ND 0.505 i.00	ND NO	ND	ND
Vinyi chtoride	3:59	1.11E+09	ND ND	ND	ND	NO NO	0.00E+00	0,00E+00 NO	0.00E+00	1
			0.00E+00	0.00E+00	0.00€+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	ND 0.00E+00
Chloroethane	3:87	1.26E+09	_ ND	ND	ND	ND	ND NO	ND ND	ND	0.00E+00
			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Trichlorofluoromethane	4:12	1.09E+09	ND	ND	ND	ND	מא	ND	ND	NO NO
			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0,00E+00	0.00E+00	0.00E+00	0.00E+00
1,1,2-Trichloro-trifluoroethane	4:67	1.81E+09	ND	ND	ND	ND	ND	NO	ND	NO
2000 - 2000 <u>2</u> 00 <u>0 2000 20</u> 00 200 200 200 200 200 200 200	18.85.865.61	1000 1000 0000	0.00E+00	0.00E+00	3.79E+04	0.00E+00	0.00E+00	0.00E+00	4.11E+04	0.00E+00
1,1-Dich broethene	4:64	3.27E+07	ND⊀1	ND×1	5	ND<1	ND<1	ND<1	3	ND<10
Mothydogo shledda	E.40	1 005 . 00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Methylene chloride	5:13	1.32E+09	ND SOF LES	NO	ND.	ND	ND	NO_	ND	ND
trans - 1,2 - Dichloroethene	E:40	1.13E+09	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
TE BOILGOODIER	3.40	1.135 +09	0.00E+00	ND 0.00E+00	ND ND	ND	ND	ND	ND	NO
1,1 - Dichloroethane	5:81	1.22E+09	ND	ND ND	0.00E+00 ND	0.00E+00 NO	0.00E+00	0.00E+00	0.00E+00	0.00E+00
			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	NO	ND	ND
cis ~ 1,2 - Dichloroethene	6:38	1.20E+09	ND ND	ND ND	ND ND	ND ND	ND ND	0.00E+00 ND	0.00E+00	0.00E+00
			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Chloroform	8:68	1.61E+09	ND	ND	ND	ND	ND	ND ND	ND	ND ND
10223 1020000000000000000000000000000000			3.53E+05	0.00E+00	5.38E+06	4.38E+05	6.91E+05	3.30E+05	1.31E+07	5.36E+05
1,1,1 - Trichloroethane	6,94	1.47E+09	ND<1	ND<1		ND×1	NO<1	NO<1	1a	ND<10
	ŀ		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Carbon tetrachloride	7:13	1.85E+09	ND	ND	ND	NO	ND	NO	NO	ND
_			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Benzene	7:31	9.81E+07	ND	ND	ND	ND	ND	ND	ND	ND
40.51.1		_	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
1,2-Dichloroethane	7:33	1.25E+09	ND	ND	ND	ND	ND .	ND	ND	ND
Trichbroothene	2029448		3.37E+05	0.00E+00	2.56E+05	0.00E+00	2.46E+05	0.00E+00	7.15E+05	0.00E+00
indubleamene	:::0.U4:	1.35E+09	ND<1	ND<1	ND<1	ND<1	ND<1	ND≼1	1	ND<10
Toluene	9:59	1.06E+08	0.00E+00 ND	0.00E+00 ND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00€+00	0.00E+00
	0.00	7.002 700	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	ND ND	ND	O
1,1,2-Trichtorethane	10:11	1.53E+09	ND	ND ND	NO NO	ND	ND ND	0.00E+00 NO	0.00E+00	0.00E+00
			5.56E+06	1.71E+08	2.57E+08	2.03E+06	8.22E+06	2.00E+08	ND + 07	ND 7.045 + OF
Tetrachiardathene	10:38	1.36E+09	8	3		3	12	2.002.700	1.20E+07 18	7.91E+05
			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00€+00
1,1,1,2-Tetrachloroethane	11:64	1.50E+09	ND	ND_	ND	ND	ND	ND	ND ND	NO
			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00€+00	0.00E+00	0.00E+00	0.00E+00
Ethylbenzene	11:64	1.01E+08	ND	ND	ND	ND	ND	ND	ND	ND
			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
meta and para - Xylene	11:80	2.60E+08	ND	CN	ND NO	ND	ND	NO	ND	ND
ortho-Xylene	12:20	1 025 - 05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Orallo - Ayserie	12.38	1.03E+08	ND 005 LOO	ND	ND	ND	NO .	ND	ON	ND ·
1,1,2,2-Tetrachloroethane	13:32	1.65E+09	0.00E+00 ND	0.00E+00 ND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
ND = not detected; exchange halo		TVØ			ND	ND	ND	ND	<u>ND</u>	<u>ND</u>

ND = not detected; analyte is below the reportable limit of quantitation for this sample

RT = retention time ul = microliter

in. Ho = Inches of mercury

Concentrations reported in micrograms per liter (ug/L)

ARF = average response factor

mi = milititier

٠1.

3/17/95

TABLE B-2 QUALITY ASSURANCE/QUALITY CONTROL REPORT DAILY MID-POINT, BLANK ANALYSIS, AND LAST GC TEST RUN MARCH 17, 1995

PID/ELCD #1

FILE: 244AQCMP.WK

<u> </u>	<u> </u>	<u> </u>	ILY MID-F	OINT	BLANK	I ACT	GC TEST	
				OINT				HUN
STANDARD CONC. (ug/L)		5000	AVERAGE		AMBIENT AIR	5000	AVERAGE	
INJECTION VOLUME(uL)		1.00	RESPONSE	PERCENT	500	1.00	RESPONSE	PERCENT
COMPOUND/WEIGHT(ug)	RT	0,00500	FACTOR	DIFFERENCE		0.00500	FACTOR	DIFFERENCE
Dichlorodifluoromethane	3:25	0			0.00E+00	0		
RF		0.00E+00	2.95E+08	NĄ	ND	0.00E+00	2.95E+08	NA
Vinyt chloride	3:59	٥			0.00E+00	0		
RF		0.00E+00	1.11E+09	NA NA	ND ND	0.00E+00	1.11E+09	NA NA
Chloroethane	3:87	0			0.00E+00	0		
RF		0.00E+00	1.26E+09	NA NA	ND	0.00E+00	1.26E+09	NA
Trichiorofluoromethane	4:12	0			0.00E+00	0		
RF	·	0.00E+00	1.09E+09	NA NA	ND	0.00E+00	1.09E+09	NA NA
1,1,2-Trichioro-trifluoroethana	4:67	0	.		0.00E+00	0 !		
RF	- 	0.00E+00	1.81E+09	NA	ND ND	0.00E+00	1.81E+09	NA
1,1-Dichloroethene	4:64	140096	-		0.00E+00	146199		
RF	5.40	2.80E+07	3.27E+07	-14	ND ND	2.92E+07	3.27E+07	-1
Methylene chloride RF	5:13	0 005,00	4.005 - 00		0.00E+00	0		
trans-1,2-Dichloroethene	5:40	0.00E+00	1.32E+09	NA	ND	0.00E+00	1,32E+09	NA
BF	5:40	6422211	4.405.00		0.00E+00	5815514		
1.1-Dichloroethane	F.04	1.28E+09	1.13E+09	14	ND ND	1.16E+09	1.13E+09	
RF	5:61	6566880 1.31E+09	4.005.00		0.00E+00	6801504		
Cis1,2-Dichloroethene	6:38	6583402	1.22E+09	8	ND ND	1.36E+09	1.22E+09	1:
RF	0.56	1.32E+09	1.20E+09	10	0.00E+00	6552637	4	
Chloroform	6:68	1.024+09	1.200708	10	0.00E+00	1.31E+09	1.20E+09	
RF	0.00	0.00E+00	1.61E+09	NA .	ND	0.00E+00	1.61E+09	
1,1,1-Trichloroethane	6:94	8344067	V.01E100		0.00E+00	8239994	1.015709	NA
AF		1.67E+09	1.47E+09	14	ND ND	1.65E+09	1.47E+09	1:
Carbon tetrachloride	7:13	0			0.00E+00	1.002403	1,412703	
RF [*]		0.00E+00	1.85E+09	NA	ND ND	0.00E+00	1.85E+09	NA
Benzene (PID)	7:31	480712		7.1.1	0.00E+00	474981	7,000103	NB.
RF RF		9.61E+07	9.81E+07	-2	ND	9.50E+07	9.81E+07	-:
1,2-Dichloroethane	7:33	6949360			0.00E+00	7192218	0.012101	
RF		1.39E+09	1.25E+09	11	ND	1.44E+09	1.25E+09	1:
Trichloroethene	8:04	7032666			0,00E+00	5901456		<u>.</u>
RF	_1	1.41E+09	1.35E+09	4	ND	1.18E+09	1.35E+09	-1;
Toluene (PtD)	9:59	464284	- ''		0.00E+00	553937		-
RF		9.29E+07	1.06E+08		ND	1.11E+08	1.06E+08	
1,1,2-Trichloroethane	10:11	7659267			0.00E+00	7193715		
RF		1.53E+09	1.53E+09	0	ND	1.44E+09	1.53E+09	
Tetrachloroethene	10:38	7087245		ł	0.00E+00	7915261		
AF	 	1.42E+09	1.36E+09	4	ND	1.58E+09	1.36E+09	16
1,1,1,2-Tetrachloroethane	11:64	0			0.00E+00	0		
RF		0.00E+00	1.50E+09	NA	ND	0.00E+00	1.50E+09	NA
Ethylbenzene (PID)	11:64	0		Į,	0.00E+00	0		
RF	1	0.00E+00	1.01E+08	NA	ON	0.00E+00	1.01E+08	NA
m.p-Xylene (PID)	11:80	1180485			0.00E+00	1377023		•
RF	1	2.36E+08	2.60E+08	-9	ND	2.75E+08	2.60E+08	
o-Xylene (PID)	12:39	471097	·		0.00E+00	559510		
RF 1,1,2,2-Tetrachloroethene	12:25	9.42E+07	1.03E+08		ND	1.12E+06	1.03E+08	
I, I, Z, Z — Terra Crisco e Chane RF	13:32	0 005 100		,,,	0.00E+00	0		
nr	<u>_</u>	0.00E+00	1,65E+09	NA	ND	0.00E+00	1.65E+09	NA NA

3/17/9

TABLE B-3 RESPONSE FACTORS FOR THREE POINT CALIBRATION SUBJECT SITE, CALIFORNIA MARCH 7, 1995

PIDELCD #1

							FILE: 03073PT.WKS
STANDARD CONC. (ug/L)		5000	5000	5000	AVERAGE		RELATIVE
INJECTION VOLUME(uL)		0.50	1.00	2,00	RESPONSE	STANDARD	% STANDARD
COMPOUND/WEIGHT(ug)	RT	0,0025	0.0050	0.0100	FACTOR	DEVIATION	DEVIATION
Dichlorodifluoromethana	3:25	605066	1476286	3459829			
CF		2.42E +08	2.98E+08	3.48E +08	2.95E+08	5.20E+07	_18
Vinyl chloride	3:59	2726510	4362418	13606952			
CF		1.09E +08	8.72E+08	1,36E +09	1.11E+09	2.45E +08	22
Chloroethane	3:87	3652266	8233357	6826227	1		-
CF	}	1.48E +09	1.65E+09	6.83E +08	1.26E+09	5.11E+08	40
Trichlorofluoromethane	4:12	2805024	5909434	9645382			_
CF		1.12E+09	1.18E+09	9.65E+08	1.09E+09	1.12E+08	10
1,1,2-Trichloro-triffuoroethane	4:87	3779378	9155142	20946224			
CF	1	1.51E+09	1.83E+09	2.09E+09	1.81E+09	2.92E+08	16
1,1-Dichloroethene	4:84	70498	169263	359773			
CF]	2.82E+07	3.39E+07	3.60E +07	3.27E+07	4.02E+08	12
Methylene chloride	5:13	2778618	6743859	14905104	1		
CF	l	1.11E+09	1.35E+09	1.49E +09	1.32E+09	1,92E+08	15
trans-1,2-Dichloroethene	5:40	2327909	5789194	13138800			
CF		9.31E+08	1.15E+09	1.31E +09	1.13E+09	1.92E+08	17
1,1-Dichloroethane	5:81	2580736	6067920	14261072			
CF		1.03E+09	1.21E+09	1.43E+09	1.22E +09	1.97E+08	16
cis-1,2-Dichloroethene	6:38	2526778	5981261	138 19 10 4			
CF		1.01E +09	1.20E+09	1.38E+09	1.20E +09	1.88E+08	16
Chloroform	6:68	3460517	8089792	18370400		· · · · · ·	
CF		1.39E+09	1.81E+09	1.84E+09	1.61E+09	2.28E+08	14
1,f,1-Trichloroethane	6:94	3233050	7274843	16478440			
CF		1.29E+09	1.45E +09	1.65E +09	1.47E +09	1.78E+08	12
Carbon tetrachloride	7:13	3854957	9247219	21657760			Ì
CF	l	1.54E+09	1.85E +09	2.17E+09	1.85E +09	3.12E+08	17
Benzene (PID)	7:31	218117	508642	1052672			
CF		8.72E +07	1.02E+08	1.05E +08	9.81E +07	9.55E+06	10
1,2-Dichloroethane	7:33	2721221	6565459	13501056			
CF .		1.09E +09	1.31E+09	1.35E +09	1.25E +09	1.42E+08	11
Trichioroethene	B:04	2656600	6788829	15371248			
CF		1.14E+09	1.36E+09	1.54E +09	1.35E +09	1.98E+08	15
Toluene (PID)	9:59	272038	555755	974026	· · · · · · ·		
CF		1.09E+08	1,11E+08	9.74E+07	1.06E +06	7.36E+06	7
1,1,2-Trichloroethane	10:11	3312373	7676731	17424528			·
CF	ļ	1.325 +09	1.54E+09	1.74E+08	1.53E+09	2.09E+08	14
Tetrachloroethene	10:38	2908749	7059344	15160392			
CF		1.18E+09	1:41E+09	1.52E+09	1.36E +09	1.81E +08	13
1,1,1,2-Tetrachloroethane	11:64	3368798	7583802	16453600			
CF		1.35E+09	1.52E+09	1.85E +09	1.50E +09	1.50E +08	10
Ethylbenzene (PID)	11:84	213637	540466	1088511			
CF	L	8.55E+07	1.08E +08	1.09E +08	1.01E+08	1.33E+07	13
m,p-Xylene (PID)	11:80	620843	1343043	2634158			
CF	<u> </u>	2.48E+08	2.69E+08	2.63E+08	2.60E +08	1.05E+07	4
o-Xylene (PID)	12:39	217668	540780	1125467			
CF		8.71E +07	1.08E +08	1.13E+08	1.03E +08	1.36E +07	13
1,1,2,2-Tetrachioroethane	13:32	3777117	8011459	16497472			
CF	<u> </u>	1.51E+09	1.60E+09	1.85E +09	1.65E +09	1.75E+08	11

RT = Retention Time

CF = Calibration Factor

ug/L = Micrograms per Liter

uL = Microitter

ug = Microgram

3/7/95

TABLE B-4 QUALITY ASSURANCE/QUALITY CONTROL REPORT LAB CONTROL SAMPLE, BLANK ANALYSIS, AND LAST GC TEST RUN

MARCH 7, 1995

PID/ELCD #1

FILE: 0223QCLC:WK

		LAB	CONTROL	SAMPLE	BLANK	LAST	GC TEST	RUN
STANDARD CONC. (ug/L)		5000	AVERAGE	1	AMBIENT AIR	5000	AVERAGE	
INJECTION VOLUME(uL)	ļ	1.00	RESPONSE	PERCENT	500	1,00	RESPONSE	PERCENT
l ' '				1 1	***			
COMPOUND/WEIGHT(ug)	RT	0.00500	FACTOR	DIFFERENCE	A	0.00500	FACTOR	DIFFERENCE
Dichlorodifluoromethane	3:25	1399779		_	0.00E+00	0	-	
RF		2.80E+08	2.95E+08	-5	ND ND	0.00E+00	2.95E+08	NA
Vinyl chloride	3:59	4695219	4.45.55	ا مد	0.00E+00	0	4.45.55	
RF	0.07	9.39E+08	1.11E+09	-15	ND ND	0.00E+00	1.11E+09	ŅA
Chloroethane	3:87	5654771	4.005.00	ا مد	0.00E+00	0:	4505.00	
RF	4.49	1.13E+09	1.26E+09	-10	ND ND	0.00E+00	1.26E+09	NA
Trichlorofluoromethane RF	4:12	5849658	1005100		0.00E+00	0	4.005.00	
1,1,2-Trichloro-trifluoroethane	4:67	1.17E+09 10334920	1.09E+09	7	0.00E+00	0.00E+00	1.09E+09	NA
RF	4.67	2.07E+09	1 915+00	14	ND ND	0.005100	1 915 . 00	814
1,1Dichioroethene (PID)	4:64	166695	1.81E+09		0.00E+00	0.00E+00	1.81E+09	NA _
RF	4.04		3.27E+07	ا	ND ND	0.005.00	2.075 (07	***
	5:13	3.33E+07 7507869	3.2/670/	2	0.00E+00	0.00E+00	3.27E+07	NA
Methylene chloride AF	3.13		1 205 100	ا ، ،		0 005.00	4.005 1.00	Ma
trans-12-Dichloroethene	5:40	1.50E+09 5925139	1.32E+09	14	0.00E+00	0.00E+00	1.32E+09	NA
RF	3.40	1.19E+09	1 135+00	5	ND 0.00E+00	0.00E+00	1 125 100	NIA.
1,1-Dichloroethane	5:81	7014864	1.13E+09	<u> </u>	0.00E+00	0.002+00	1.13E+09	NA NA
RF	3.61		1 00E 100	4.5	1	0.005.00	4 00F (00	114
Cis-1,2-Dichloroethene	6:38	1.40E+09	1.22E+09	15	ND 2 205 + 20	0.00E+00	1.22E+09	NA
RF	0.00	6724355	1.2051.00	4.0	0.00E+00	0.005.00	4 MF 1 M	
Chloroform	6:68	1.34E+09 8861837	1.20E+09	12	0.00E+00	0.00E+00	1.20E+09	NA NA
RF	0.00	1.77E+09	1.61E+09	10	ND 0.00E+00	0.00E+00	1.615+00	NA
1,1,1-Trichloroethane	6:94	8234368	1.012103	10	0.00E+00	0.002+00	1.61E+09	IVA
RF	0.04	1.65E+09	1.47E+09	12	ND ND	0.00E+00	1.47E+09	NA.
Carbon tetrachloride	7:13	9356275			0.00E+00	0.002100	1.47 2 1 00	IIA
RF '	1	1.87E+09	1.85E+09	1	ND	0.00E+00	1.85E+09	NA
Benzene (PID)	7:31	514088		·	0.00E+00	0.555	1.002100	117.
RF	1	1.03E+08	9.81E+07	5	ND ND	0.00E+00	9.81E+07	NA
1,2-Dichloroethane	7:33	6207936	2.512.51	· ·	0.00E+00	0,002,00	5.012107	NA
RF		1.24E+09	1.25E+09	-1	ND	0.00E+00	1.25E+09	NA
Trichloroethene	8:04	6887917			0.00E+00	0		
RF		1.38E+09	1.35E+09	2	ND	0.00E+00	1.35E+09	NÁ
Toluene (PID)	9:59	531703			0.00E+00	0		
RF		1.06E+08	1.06E+08	o	ND	0.00E+00	1.06E+08	NA
1,1,2-Trichloroethane	10:11	7962355			0.00E+00	0	11002100	
RF	_]_	1.59E+09	1.53E+09	4	ND	0.00E+00	1.53E+09	NA NA
Tetrachloroethene	10:38	7202451			0.00E+00	0		
RF		1.44E+09	1.36E+09	6	ND ND	0.00E+00	1.36E+09	NA
1,1,1,2-Tetrachlomethane	11:64	6475619			0,00E+00	0		
RF		1.30E+09	1.50E+09	- 14	ND	0.00E+00	1.50E+09	NA
Ethylbenzene (PID)	11:64	488901			0.00E+00	0		
RF		9.78E+07	1.01E+08	-3	ND	0.00E+00	1.01E+08	NA '
m,p-Xylene (PID)	11:80	1244593			0.00E+00	0		
RF		2.49E+08	2.60E+08	-4	ND	0.00E+00	2.60E+08	NA .
o-Xylene (PID)	12:39	489708			0.00E+00	0		
RF		9.79E+07	1.03E+08	∽ 5	ND	0.00E+00	1.03E+08	NA
1,1,2,2-Tetrachioroethane	13:32	8805946			0.00E+00	0		
		1.76E+09	1,65E+09	7	l i	0.00E+00	1.65E+09	NA

3/7/95

Table B-5 Environmental Support Technologies, Inc. Detection Limits for Soil Gas Surveys

Detection Limits or Reportable Limits of Quantitation for Halogenated and Aromatic Hydrocarbons are 1 ug/L when the injection volume is 500 uL. For lesser injection volumes detection limits are listed below.

Injection	Detection
Volume (uL)	Limit (ug/L)
500 250 200 100 80 60 50 40 20 10 5	1.0 2.0 2.5 5.0 6.3 8.3 10.0 12.5 25.0 50.0 100.0 500.0

Appendix C

LABORATORY RESULTS AND CHAIN OF CUSTODY DOCUMENTATION FOR TEDLAR $^{\text{TM}}$ BAG SAMPLE

ORANGE COAST ANALYTICAL, INC.

3002 Dow, Suite 532, Tustin, CA 92680 (714) 832-0064, Fax (714) 832-0067

Environmental Support Technologies Client Project ID: Former Sprayco ATTN: Mr. Kirk Thomson 23011 Moulton Pkwy Suite E6 Laguna Hills, CA 92653

Client Project #: 93-513

Sample Description: Air, NP1-100 Laboratory Sample Number: 95030397 Laboratory Reference #: EST 5571

Sampled: 03-17-95 Received: 03-17-95 Analyzed: 03-17-95 Reported: 03-20-95

Volatile Organics by GC/MS (EPA 8240)

ANALYTE	CAS NUMBER	DETECTION LIMIT (ppm)	SAMPLE RESULT (PPM)
Acetone	67-64-1	1.3	N.D.
Benzene	71-43-2	0.3	N.D.
Bromodichloromethane	75-27-4	0.3	N.D.
Bromoform	75-25-2	0.3	N.D.
Bromomethane	74-83-9	0.3	N.D.
2-Butanone	78-93-3	1.3	N.D.
Carbon Disulfide	75-15-0	1.3	N.D.
Carbon tetrachloride	56-23-5	0.3	N.D.
Chlorobenzene	108-90-7	0.3	N.D.
Chlorodibromomethane	124-48-1	0.3	N.D.
Chloroethane	75-00-3	0.3	N.D.
2-Chloroethyl vinyl ether	110-75-8	0.5	N.D.
Chloroform	67-66-3	0.3	N.D.
Chloromethane	74-87-3	0.3	N.D.
1,1-Dichloroethane	75-35-3	0.3	N.D.
1,2-Dichloroethane	107-06-2	0.3	N.D.
1,1-Dichloroethene	75-35-4	0.3	5.8 <
Trans 1,2-Dichloroethene	156-60-5	0.3	N.D.
1,2-Dichloropropane	78-87-5	0.3	N.D.
cis-1,3-Dichloropropene	10061-01-5	0.3	N.D.
trans-1,3-Dichloropropene	10061-02-6	0.3	N.D.
Ethylbenzene	100-41-4	0.3	N.D.
2-Hexanone	591-78-6	0.5	N.D.
Methylene chloride	75-09-2	0.5	N.D.
4-Methyl-2-pentanone	108-10-1	1.3	N.D.
Styrene	100-42-5	0.3	N.D.
1,1,2,2-Tetrachloroethane	79-34-5	0.3	N.D.
Tetrachloroethene	127-18-4	0.3	6.2 <
Toluene	108-88-3	0.3	N.D.
1,1,1-Trichloroethane	71-55-6	0.3	16 <
1,1,2-Trichloroethane	79-00-5	0.3	N.D.
Trichloroethene	79-01-6	0.3	2.5 <
Trichlorofluoromethane	75-69-4	1.3	N.D.
Vinyl acetate	108-05-4	1.3	N.D.
Vinyl chloride	75-01-4	0.3	N.D.
Total Xylenes	1330-20-7	0.3	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

ORANGE COAST ANALYTICAL

Mark Noorani Laboratory Director

CHAIN OF CUSTODY RECORD

Analysis

• •	
18218 McDurmott East, Suite G, Irvine, California 92714	
(714) 553-8757 · FAX (714) 261-8550	

(, , , , , , , , , , , , , , , , , , ,		
Project Name Former Spray Co		
Project No. 93-513		
Location North Hollywood, CA		
Project Manager Phil Miller		
Sheet of Date 3/17/95		
	9 - 4	2
	_ ½ C %	الما

note: 2-day holling

Remarks

Sa	Date Sampled	Time Sampled	Sample Description	Grab	Composite	Number of containers	8246		·		time.	
NP1-100"	3/17/95	11:30	4/r	X		1	X					
					_	-						
						-					 	
		!		-								
	-			-								

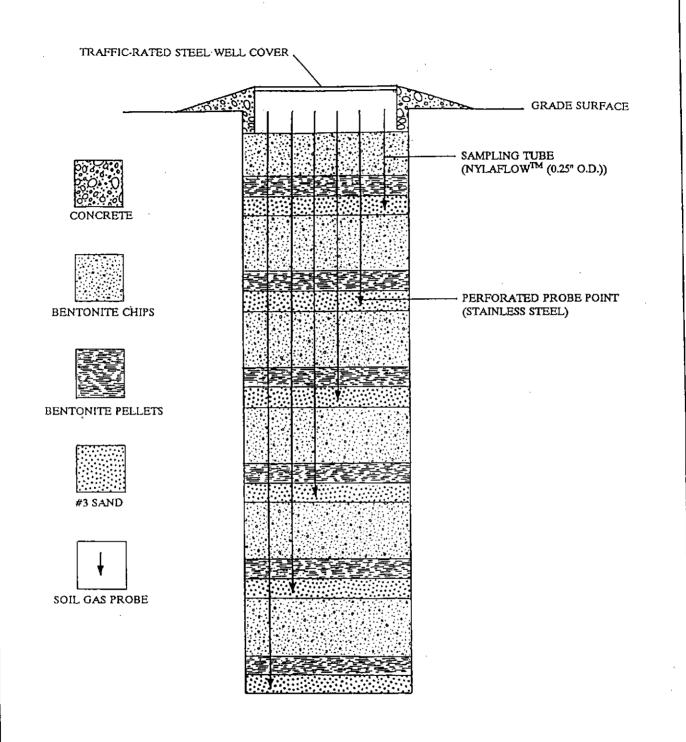
	Signature	Company	Date	Time
Collected by	A Drander	Georgeton Cons	3/17/95	3:10
Relinquished by	Assula	(1)	i.	
Received by	MCS	0(14-	3-17.95	3:30
Relinquished by				
Received by				
Relinquished by				
Received by				

Appendix D EST'S STANDARD METHODS AND PROCEDURES

ENVIRONMENTAL SUPPORT TECHNOLOGIES, INC.

SOIL GAS SURVEYING METHODS AND PROCEDURES FOR NESTED SOIL GAS SAMPLING PROBES

Environmental Support Technologies, Inc. (EST) will perform soil gas surveys in accordance with Los Angeles Regional Water Quality Control Board (LARWQCB) "Requirements for Active Soil Gas Investigation" dated March 8, 1994. Some procedures may be modified based on evaluation of project needs. Modifications to these procedures, if necessary, will be approved prior to implementation and will be described in the soil gas survey report.


NESTED SOIL GAS PROBE INSTALLATION

Nested probes provide useful data for assessment of the vertical extent of potential soil contamination by VOCs at a particular point. Construction of a typical nested probe installation is shown in Figure 1. Details of typical nested probe construction are described below. Nested soil gas probes are typically installed at selected depths based on field screening of soil samples during drilling, or where a fine-grained lithology is encountered.

Upon drilling to total depth and completion of soil sampling, the soil boring will be converted to a nested probe installation. The borehole will typically be overdrilled by approximately one foot, and a total bore-hole depth measurement will be recorded. Depths below grade will be measured by sounding the borehole with a weighted engineer's tape graduated in 0.1-foot increments. The auger string will then be raised slightly and #3 Monterey sand will be poured down the hollow auger-stem until the boring has been backfilled approximately one foot, to the first depth of interest. A labeled and weighted soil gas probe will be lowered down the hollow auger-stem until the #3 sand-pack is encountered. The weighting of the distal end of the probe will ensure that the probe point remains in place during installation. Additional #3 Monterey sand will be added to the boring, burying the probe point and back-filling the boring to approximately one foot above the probe.

The two-foot-thick sand pack will allow for diffusion of soil gas into the sampling interval containing the probe point. In general, the sand pack should not exceed two feet in thickness. However, latest LARWQCB requirements for vertical profiling/nested probe soil gas surveys suggest that in deeper nested probe installations (greater than 100 feet below grade), the sand pack should extend approximately four feet above the probe point to allow for potential settling of the sand pack due to overburden pressure.

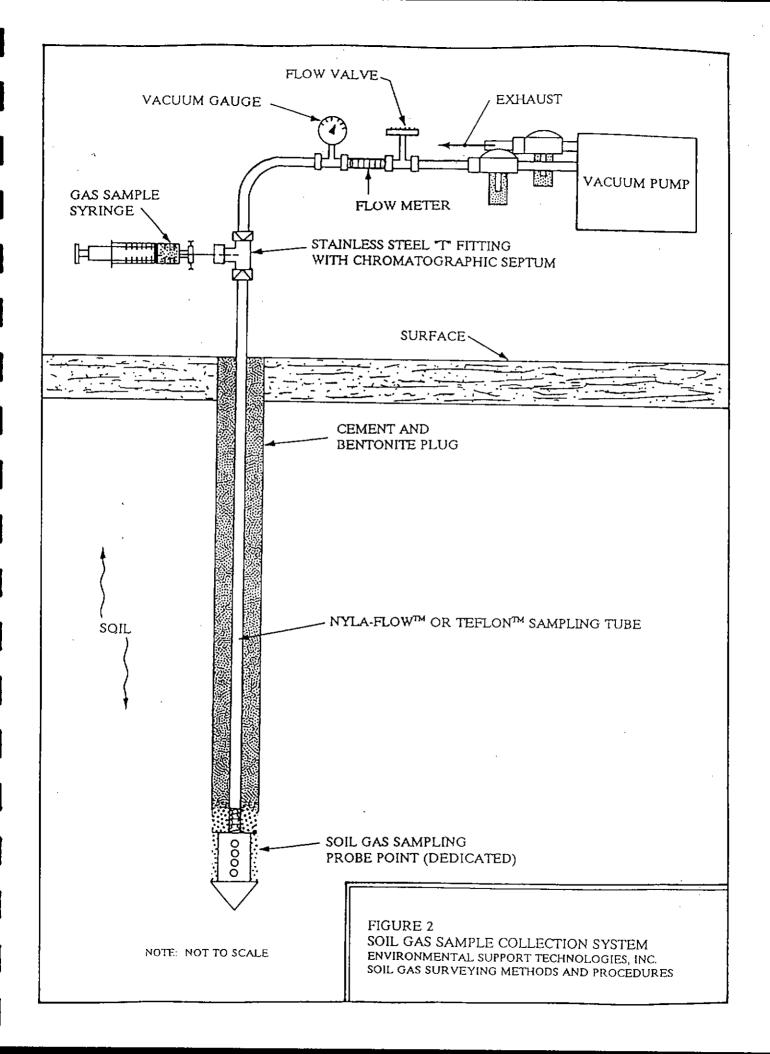
The sand pack interval will be capped with approximately 1.5-feet of bentonite pellets. Medium bentonite chips will then be used to back-fill the boring to about one foot below the next level of interest. The bentonite chips will then be hydrated and allowed to expand for about 15 minutes before introducing the next sand pack. The waiting period will allow the bentonite chips to hydrate, ensuring that potential downward migration of the sand pack material through the underlying bentonite materials will not occur.

VERTICAL SCALE:
1-inch = 1-foot
BOREHOLE DIAMETER EXAGGERATED FOR CLARITY

FIGURE 1 CONSTRUCTION DETAIL OF A TYPICAL NESTED SOIL GAS PROBE INSTALLATION ENVIRONMENTAL SUPPORT TECHNOLOGIES, INC. SOIL GAS SURVEYING METHODS AND PROCEDURES After the waiting period, another sand pack/probe interval will be constructed using the procedures described above. This procedure will be repeated until grade surface is reached and probe installation is complete. To complete the nested probe installation at grade, a heavy-duty, traffic-rated well cover will be fitted and cemented in place.

SOIL GAS SAMPLE COLLECTION AND HANDLING

About one month following installation, per LARWQCB requirements, soil gas samples will be collected from each probe and will be analyzed on site for LARWQCB target analytes, including volatile halogenated and aromatic hydrocarbons. Soil gas samples will be collected from the nested probes using the soil gas sampling system as shown in Figure 2. The soil gas sampling system is constructed of stainless-steel, glass, NylaflowTM, and TeflonTM components. Instrumentation associated with the sampling system includes a calibrated flowmeter and vacuum gage. Vacuum integrity of the sampling system will be tested prior to, and after the soil gas survey using leak-down testing methods.


Nested soil gas sampling probes will be purged at a flowrate of approximately 100 milliliters per minute (mL/min). Site-specific probe purging and sample volume calibrations will be initially performed to evaluate the appropriate volume of gas to be purged from each probe prior to sample collection. This will be done by performing time-series sampling of at least one probe to evaluate trends in soil gas concentrations as a function of purge volume. If soil lithologies are consistent, a single determination will be adequate.

After probe purging, soil gas samples will be withdrawn from the moving sample stream using a glass syringe fitted with a disposable needle and MininertTM gas-tight valve. Soil gas samples will be analyzed by direct gas injection into a laboratory-grade, field-operable gas chromatograph (GC).

SOIL GAS SAMPLE ANALYSES

Soil gas samples collected from nested probes will be analyzed in the field using a field-operable GC equipped with a photo-ionization detector (PID) and an electrolytic conductivity detector (ELCD). The PID and ELCD will be configured in-series to analyze for EPA Method 8010/8020 target compounds as specified in the LARWQCB requirements (March 8, 1994) including halogenated and aromatic hydrocarbons.

Detection limits for the LARWQCB target compounds will be no more than one microgram per liter (μ g/L) of gas except when compound concentration exceeds the initial calibration range. Soil gas samples may be analyzed for other constituents on a site-specific basis. Other common analyses methods include total volatile hydrocarbons (TVHs) as gasoline, mineral spirits, or jet fuel, and selected ketones. A series of quality assurance/quality control (QA/QC) analyses will be performed prior to, during, and following the analysis of soil gas samples. A summary of these QA/QC analyses is shown in Table 1, and each analysis described below.

TABLE 1

SUMMARY OF QUALITY ASSURANCE/QUALITY CONTROL ANALYSES FOR SOIL GAS SURVEYS

CALIBRATION AND LABORATORY CONTROL SAMPLES PRECISION DESCRIPTION **FREQUENCY** GOAL %RSD or %DIFF INITIAL THREE-POINT At the beginning of the soil gas survey, unless the RPDs of the initial laboratory check sample or daily mid-point calibration CALIBRATION 20 - 30(1)check samples exceed their goals. (25 Target Compounds) INITIAL LABORATORY At the beginning of the survey, following the initial three-15(2)CONTROL SAMPLE (LCS) point calibration. (25 Target Compounds) DAILY MID-POINT At the beginning of each day. 15 (3) CALIBRATION CHECK 25 (3) (12 Target Compounds) LAST GC TEST RUN At the end of each day. 20 (4) (12 Target Compounds) FIELD CONTROL SAMPLES DESCRIPTION **FREQUENCY PRECISION** GOAL **BACKGROUND SAMPLE (5)** Minimum one per day. N/A SYRINGE BLANK (5) Minimum one per day. N/A

%RSD = Percent Relative Standard Deviation calculated based on the initial three—point calibration.

%DIFF = Percent Difference between the response factor obtained from the LCS, the daily mid—point calibration, or the last GC test run and the average response factor initially calculated based on the three—point calibration.

N/A = Not applicable.

- (1) The %RSD goal for the initial three-point calibration will be 20 percent for all compounds except for Freon 11, Freon 12, Freon 113, chloroethane, and vinyl chloride for which the %RSD goal is 30 percent.
- (2) The %DIFF goal for the LCS will be 15 percent for all target compounds.
- (3) The %DIFF goal for the daily mid-point calibration check will be 15 percent for all compounds except for Freon 11, Freon 12, Freon 113, chloroethane, and vinyl chloride for which the %DIFF goal is 25 percent.
- (4) The %DIFF goal for the last GC test run will be 20 percent for all compounds except for Freon 11, Freon 12, Freon 113, chloroethane, and vinyl chloride for which the %DIFF goal is 30 percent.
- (5) A syringe/background sample will be analyzed using ambient air. If volatile organic compounds (VOCs) are not detected, the ambient air sample will represent the background sample and syringe blank. If VOCs are detected in the ambient air sample, a syringe blank will be analyzed using ultra—high—purity helium or nitrogen gas.

INITIAL MULTI-POINT EQUIPMENT CALIBRATION

The GC used for soil gas analyses will be calibrated using high-purity solvent-based standards obtained from certified vendors or using gas standards prepared in the field (for TVHs). Standards are typically prepared in high-purity methanol or dodecane solvent. Calibration using solvent-based standards will typically be performed using varying injection volumes of the stock solvent-based standard without dilution. If necessary, stock solvent-based standards will be diluted to an appropriate concentration. Diluted standards will be prepared by introducing a known volume of stock solvent-based standard into a known volume of high-purity solvent.

Initial GC calibration will be performed for EPA Method 8010/8020 compounds. The GC will be calibrated using three standard injections to establish a three-point calibration curve. The lowest standard will not be higher than five times the method detection limit (or 5 µg/L). The percent relative standard deviation (%RSD) of the response factor (RF) for each target compound will not exceed 20 percent except for trichlorofluoromethane (FreonTM-11), dichlorodifluoro-methane (FreonTM-12), trichlorotrifluoromethane (FreonTM-113), chloroethane, and vinyl chloride which will not exceed 30 %RSD. Identification and quantitation of compounds in the field will be based on calibration under the same analytical conditions as for three-point calibration.

LABORATORY CONTROL SAMPLE (LCS)

A laboratory control sample (LCS) from a source other than the initial calibration standard will be used to verify the true concentration of the initial calibration standard. The LCS will include the LARWQCB target compounds and the RF for each compound will be within +/- 15 percent difference from the initial calibration.

DAILY MID-POINT CALIBRATION CHECK

Daily field calibration of the GC will consist of a mid-point calibration analyses using the same standard as used for the initial multi-point calibration. The daily mid-point calibration check will include the 12 target compounds as specified in the previously referenced LARWQCB requirements. The RF of each compound (except for FreonsTM-11, -12, and -113, chloroethane, and vinyl chloride) will be within 15 percent difference of the average RF from the initial calibration. The RF for the FreonsTM-11, -12, and -113, chloroethane, and vinyl chloride will be within 25 percent difference of the initial calibration. If these criteria are not met, the GC will be re-calibrated. Daily calibration will be performed prior to the first sample analysis of the day. One-point calibration will be performed for all compounds detected at a particular site to ensure accurate quantitation. Subsequent calibration episodes, if deemed necessary, will consist of at least one injection of the standard exhibiting a similar detector response as that of samples encountered in the field.

BLANK INJECTIONS

The syringes used for soil gas sample collection will be filled with ambient air or high-purity carrier-grade gas from a compressed gas cylinder. The ambient air or high-purity gas will be injected directly into the GC. The blank injection will serve to detect contamination of the syringe to be used for sampling and verify the effectiveness of equipment decontamination procedures.

END OF DAY GC TEST RUN

A LCS will be analyzed at the end of each day. The LCS will contain the same compounds as the daily mid-point calibration standard (minimum 12 compounds). The LCS must be from a second source independent from the initial multi-point calibration standard. The RF for each compound will be within 20 percent difference of the average RF for the initial calibration. If this criteria is not met, additional LCS will be analyzed to satisfy this criteria.

DECONTAMINATION PROCEDURES

Sampling equipment in contact with the soil gas sample stream will be decontaminated prior to initiation of sampling and prior to collection of each soil gas sample. Decontamination of soil gas sampling equipment will be conducted by by baking in the gas chromatograph oven at approximately 160° Celsius.

SHORTENING THE GC RUN TIME

Shortening the GC run time is acceptable only if the chemist feels that doing so will not sacrifice the quality of data obtained and doing so meets the approval of appropriate client and agency personnel.

COMPOUND CONFIRMATION SAMPLE

As a means of compound confirmation, EST will collect one soil gas sample from a selected probe in a TedlarTM bag for off-site analysis by a certified laboratory using gas chromatography/mass spectrometric (GC/MS) methods.

REPORTING OF SAMPLE RESULTS AND QA/QC INFORMATION

Reporting of sample results and QA/QC information will be performed in accordance with the Los Angeles Regional Water Quality Control Board's "QA/QC and Reporting Requirement for Soil Gas Investigation" dated March 8, 1994.

VAPOR MONITORING EVENTS

Latest LARWQCB requirements for vertical profiling/nested probe soil gas surveys require a minimum of three vapor monitoring events to evaluate the consistency of the data.

BACKGROUND MEMO

Facility: Sprayco

Subject: Vapor well results

Date: August 1, 1995 File Number: 111.1004

From: JFL

Sprayco was requested in a letter dated xx/xx/xx, to install and sample a nested vapor monitoring well. A summary of the results is attached. The results indicate that during the first month of sampling, VOCs were not detected above the detection at ten of the depths sampled. During the next sampling episode VOCs were detected at nine of these depths. Therefore, at least two more sampling episodes are required to determine whether the NDs obtained were indicative of the true concentration in the subsurface at this facility.

APPENDIX D

SOIL GAS SAMPLING AND ANALYSIS APRIL 20, 1995

Should you have any questions or comments, please contact me at (714) 457-9664.

Sincerely,

Environmental Support Technologies, Inc.

KLA Thomson

Kirk A. Thomson, R.G., R.E.A. Project Manager/Principal Hydrogeologist

cc:

EST Project File

RECEIVED

MAY 2 4 1995

May 23, 1995

EST 1244

Mr. Phil Miller Geosystem Consultants 18218 McDurmott East, Suite G Irvine, California 92714

Subject:

Nested Soil Gas Probe Sampling and Analyses (Second Episode)

Former Sprayco Site

12600 Saticoy Street South, North Hollywood, California

Dear Mr. Miller:

Environmental Support Technologies, Inc. (EST) is pleased to submit field analyses results for soil gas samples collected from nested probes (second episode) at the former Sprayco site located at 12600 Saticoy Street South in North Hollywood, California.

Results of the soil gas sample analyses performed on April 20, 1995 are summarized in Table 1. Some factors that affect the distribution of volatile organic compounds (VOCs) in the subsurface are listed in Appendix A. Field soil gas analyses reports, quality assurance/quality control data, calibration data, and an explanation of method detection limits for soil gas samples are included in Appendix B.

Soil gas samples were analyzed on-site using a gas chromatograph (GC) equipped with a photo-ionization detector (PID) and an electrolytic conductivity detector (ELCD) placed in series. The GC configuration used a megabore capillary column to allow resolution and quantitation of EPA Method 8010/8020 compounds, including halogenated and aromatic hydrocarbons. Soil gas sample collection and analysis were performed in accordance with Los Angeles Regional Water Quality Control Board (LARWQCB) protocols dated March 8, 1994. Details of EST's standard methods and procedures for sampling and analyses of soil gas samples collected from nested soil gas probes are provided in Appendix C.

TABLE 1

p.f of 1

SUMMARY OF FIELD ANALYSES RESULTS FOR SOIL GAS SAMPLES COLLECTED FROM NESTED SOIL GAS SAMPLING PROBES

FORMER SPRAYCO SITE 12600 SATICOY STREET SOUTH, NORTH HOLLYWOOD, CALIFORNIA

05/23/95							24T1E2.WK)
PROBE	PROBE	SAMPLING	SAMPLING	DCE	TCA	TCE	PCE
NUMBER	DEPTH (ft.)	DATE	EVENTS	(ug/L)	(ug/L)	(ug/L)	(ug/L)
NP1-20	20	03/17/95	1	3	18	1	18
		04/20/95	2	ND<5	ND<5	ND<5	47
NP1-40	40	03/17/95	2	ND<1	ND<1	ND<1	12
		04/20/95	1	8	24	13	143
NP1-50	50	03/17/95	NS	NS	NS	NS	NS
		04/20/95	3	ND<1	ND<1	ND<1	55
NP1-60	60	03/17/95	1	ND<1	ND<1	ND<1	12
		04/20/95	1	ND<2.5	21	8	90
NP1-80	80	03/17/95	1	ND<1	ND<1	ND<1	3
		04/20/95	11	2	18	11	49
NP1-100	100	03/17/95	3	2	7	ND<1	8
		04/20/95	3	8	34	47	80

(ft.) = Probe depth in feet below grade

(ug/L) = micrograms per liter

DCE = 1.1-dichloroethene

TCA = 1,1,1-trichloroethane

TCE = trichloroethene

PCE = tetrachloroethene

ND = not detected above stated detection limit

NS = not sampled

Concentrations reported are the highest detected in each probe

APPENDICES

Appendix A

FACTORS AFFECTING THE GAS-PHASE DISTRIBUTION OF VOCs IN THE SUBSURFACE

Soil and groundwater contamination by volatile organic compounds (VOCs) can often be detected by analyzing trace gases in soil just below ground surface. This technique is possible because many VOCs will volatilize and move by molecular diffusion away from source areas toward regions of lower concentrations. A gas phase concentration gradient from the source to adjacent areas is established.

The following factors affect the transport and gas phase distribution of VOCs in the subsurface.

- 1. The liquid-gas partitioning coefficient of the compounds of interest (the "volatility" of the compound).
- 2. The vapor diffusivity, which is a measure of how quickly an individual compound "spreads out" within a volume of gas.
- 3. Retardation of the individual compounds as they migrate in the soil gas. Retardation may be due to degradation, adsorption on the soil matrix, tortuosity of the soil profile, or entrapment in unconnected pores.
- 4. The presence of impeding layers, wetting fronts of freshwater, or perched water tables, between the regional water table and ground surface.
- 5. The presence of soil moisture around man-made structures such as clarifiers and sumps may suppress volatilization and diffusion of VOCs resulting in false negative or low soil gas concentrations.
- 6. The presence of contaminants from localized spills or in the ambient air.
- 7. Movement of soil gas in response to barometric pressure changes.
- 8. The preferential migration of gas through zones of greater permeability (e.g. natural lithologic variation or back-fill of underground utilities).

At most sites, many of these factors are unknown or poorly understood. Because of this uncertainty, soil gas sampling should be used in conjunction with other site-specific data.

Appendix B

FIELD ANALYSES RESULTS FOR HALOGENATED AND AROMATIC HYDROCARBONS

(INCLUDING CALIBRATION REPORTS, QUALITY CONTROL REPORTS, AND EXPLANATION OF METHOD DETECTION LIMITS)

TABLE B-1 HALOGENATED AND AROMATIC HYDROCARBONS FIELD ANALYSES RESULTS FOR SOIL GAS SAMPLES 12600 SATICOY STREET SOUTH, NORTH HOLLYWOOD, CALIFORNIA

25-TARGET COMPOUND LIST

PID/ELCD #2 -- 4/20/95

DALABLE	<u> </u>		AIPS 455	T			<u> </u>			ISGRP:WICO
SAMPLE IC	, <u> </u>		NP1-100	NP1-100	NP1-100	NP1-80	NP1-60	NP1-40	NP1-20	NP1-20
DATE			4/20/95	4/20/95	4/20/95	4/20/95	4/20/95	4/20/95	4/20/95	4/20/95
TIME			10:31	10:50	11:01	11:19	11:38	11:54	12:11	12:25
INJECTION VOLU	ME (ut)		500	. 100	100	250	200	100	50	10
PURGE VOLUME	(ml)		1500	1500	1500	1200	900	600	300	30
VACUUM (in. I	Hg)		ND	ND	ND	ND	ND	ND	ND	ND
DILUTION FAC	TOR		1.0	5.0	5.0	2.0	2.5	5.0		5.0
COMMENTS			1	SYRINGE		 	 		1,0.0	
	RT	ARF	ļ <u></u>	LEAK			<u> </u>	ļ <u> </u>		
Dichlorodif!uromethane	2:69	1.15E+08	0.00E+00	0.00E+00	0.00E+00			0.00€+00		0.00E+0
Diemordansi omenare	1 2.00	1.135 +00	0.00E+00	0.00E+00	0.00E+00	ND	ND	NO	NO	ND_
Vinyl chloride	3:02	3.69E+08	ND ND	ND ND	ND	0,00E+00 ND	0.00E+00	0.00E+00	0.00E+00	0.00E+0
		10,002 102	0.00E+00	0.00E+00	0.00E+00		ND 007 100	ND	ND	ND
Chloroethane	3:31	1.19E+08	ND	ND ND	ND ND	ND	0.00E+00 ND	0.00E+00	0.00E+00	0.00E+0
		77,00	0.00E+00	0.00E+00	0.00E+00		0.00E+00	0.00E+00	ND	ND 0.005 LO
Trichloroffuoromethane	3:50	4.01E+08	1	ND ND	ND ND	ND ND	ND COL	ND ND	0.00E+00	0.00E+00
			0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
1,1,2-Trichtoro-triftuoroethane	4:15	9.15E+08	ND	ND	ND	ND	ND ND	ND ND	NO NO	ND ND
MANAGE			6.96E+04	5.38E+03	1.74E+04	1.32E+04	5.87E+03	1.64E+04	0.00E+00	0.00E+00
1,1-Dichlorcethene	4.16	2.13E+07	7	ND×5	a e	2	NO<25	e.	<u> </u>	NO<5
			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Methylene chloride	4:88	7.52E+08	ND	NO	ND D	ND	ND	ND	ND	ND
			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0,00E+00	0.00E+00	0.00E+00	0.00E+00
trans-1,2-Dichloroethene	4:96	7.08E+08	ND	ND	ND	ND	ND	ND	NO	ND
	ł		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
1,1-Dichloroethane	5:41	6.67E+08	ND	ND	ND	ND	ND	ND	ND	ND
*	ľ	İ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0,00E+00
cls-1,2-Dichloroethene	6:04	8.03E+08	ND	ND	ND	ND	ND	ND	ND	ND
_ ^			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Chloroform	6:38	8.02E+08	NO NO	NO	NO.	ND	ND	ND	ND	ND
	4882592525	0.500.000000000000000000000000000000000	1.17E+07	1.04E+08	3.04E+06	4.11E+06	3.72E+06	2.14E+06	0.00E+00	2.70E+05
1,1,1+Trichloroethane	6:65	9.02E+08	26	12	54	10	21	24	ND<10	ND≮5
Carban tatrackladda	0.00	4.055.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Carbon tetrachloride	6:86	1.05E+09	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	7:09	E E4E 107	0.00E+00	0.00E+00	0.00E+00	0,00E+00	0.00E+00	0.00E+00	0.00€+00	0.00E+00
Delizare	7.08	6.54E+07	ND 0.005+00	ND ND	ND	ND	ND.	ND.	ND	ND
1,2-Dichloroethane	7:09	8.40E+08	0.00E+00 ND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
1,E Biolioi Genalie	7.00	0.400, +00	1.71E+07	ND 1 375 + 00	ND P. DOE 100	ND	ND	ND.	ND	ND
Trichioroethene	7.87	8.29E+08	1.71E+U7	1.37E+08	3.88E+08	2.33E+06	1.37E+06	1.05E+06	0.00E+00	0.00E+00
	CONTRACTOR		0.00E+00	16 0.00E+00	47	0.005 + 00	8 005 00	13	ND<10	ND<5
Toluene	. 9:62	5.82E+07	ND ND	ND ON	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
		5.022 701	0.00E+00	0.00E+00	0.00E+00	0.00E+00	ND ND	ND	ND	ND
1,1,2 - Trichlorethane	10:16	7.30E+08	ND ND	ND	ND	ND	0.00E+00	0.00E+00	0.00E+00	0.00E+00
		7.002 100	2.28E+07	2.13E+08	7.48E+08	1.16E+07	ND 1 soc 1 oz	ND 1015 107	ND	ND
Tetrachloroethene	10:45	9.40E+08	48	23	80	49	1.69E+07 90	1.34E+07 143	2.15E+06 45	4.38E+06
			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
1,1,1,2-Tetrachloroethane	11:88	8.24E+08	ND	ND	ND	ND ND	ND	ND	ND ND	ND ND
			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Ethylbe nze ne	11:93	4.88E+07	NO	ND	_ND	NO	ND ND	ND	ND	ND ND
			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00€+00	0.00E+00	0.00E+00	0.00E+00
meta and para - Xylene	12:11	1.27E+08	ND	NO	ND	ND	ND ND	ND	ND ND	ND
			0.00E+00	0.00E+00	0.00E+00	0.00€+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
ortho-Xylene	12:78	4.76E+07	ND	ND	ND	ND	ND	NO	ND	ND
			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
1,1,2,2-Tetrachiorcethane	13:85	6,79E+08	ND.	ND	ND	ND	ND	ND_	ND	' ND
										

ND = not detected; analyte is below the reportable limit of quantitation for this sample RT = retention time

ul = microliter

In Ha = Inches of mercury

Concentrations reported in micrograms per liter (ug/L)

ARF = average response factor

mi = millimer

4/20/95

TABLE B-1 HALOGENATED AND AROMATIC HYDROCARBONS FIELD ANALYSES RESULTS FOR SOIL GAS SAMPLES 3846 NORTH PECK ROAD, SOUTH EL MONTE, CALIFORNIA

25-TARGET COMPOUND LIST

PID/ELCD #2 - 4/20/95

			T	1	· · · · · · · · · · · · · · · · · · ·		1	1	FILE: 2448	SGRP.WK3
SAMPLE ID			NP1-50	NP1-50	NP1-50	. NA	NA .	NA NA	NA .	NA NA
DATE			4/20/95	4/20/95	4/20/95	NA	AN	NA NA	NA NA	NA .
TIME			13:51	14:06	14:20	NA	NA	NA NA	NA	NA NA
INJECTION VOLUM	VE (nl)		500	200	200	NA	NA NA	NA NA	NA	NA NA
PURGE VOLUME	(ml)		800	1200	1600	NA NA	NA	NA	NA .	NA
VACUUM (In. H	ig)		ND	ND	ND	NA.	NA	NA NA	NA	NA.
DILUTION FACT	FOA		1.0	2.5	2.5	NA	NA NA	NA	NA NA	NA.
COMMENTS			-							
	RT	ARF	0.005 1.00	0.005 .00						
Olchlorodifluromethane	2:69	1.15E+08	. 0.00E+00	0.00E+00 ND	0.00E+00 ND	0.00E+00 NO	0.00E+00 ND	0.00E+00	0.00E+00	300,00E
			0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00€+00	0.00E
Vinyl chloride	3:02	3.69E+08	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E
Chloroethane	3:31	1.19E+08	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND
•			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E
Trichlorofluoromethane	3:50	4.01E+08	ND	ND	,NO	NO	ND	ND	ND	ND
			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E
1,1,2-Trichloro-trifluoroethane	4:15	9.15E+08	ND	ND	ND	ND	ND	ND	ND	ND
]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E
1,1-Dichlorgethene	4:16	2.13E+07	ND	ND	NO	ND	NO	ND	ND	ND
			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E
Methylene chloride	4:66	7.52E+08	ND	ND DN	ND	ND	ND	ND	ND	ND
10 Other-way			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00€
trans - 1,2 - Dichlorcethene	4:96	7.08E+08	ND	ND	ND .	ND	_ND	ND.	ND	ON
1.1. Dichloroothons	E.44	0.075 .00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E
1,1-Dichloroethane	5:41	6.67E+08	ND	ND	ND	ND _	ND .	ND .	ND .	ND
cls - 1,2 - Dichloroethene	6:04	9.035 1.09	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E
cis - 1,2 - Dictilor Certains	0.04	8,03E+08	0.00E+00	0.00E+00	0.00E+00	ND	ND	ND	ND.	ND
Chloroform *	6:38	9.02E+08	ND ND	ND ND	ND ND	0.00E+00 ND	0.00E+00	0.00E+00	0.00E+00	0.00E -
		0.022,100	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	ND OOF 100	ND
1,1,1-Trichtoroethane	6:65	8.02E+08	ND	ND	ND ND	ND ND	ND ND	ND	0.00E+00 ND	0.00E - ND
			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+
Carbon tetrachloride	6:66	1.05E+09	ND.	ND	ND	ND	ND ND	ND	ND ND	ND
			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+
Benzene	7:09	6.54E+07	ND	ND	ND	ND	ND	ND ND	ND ND	ND
			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+
1,2-Dichloroethane	7:09	8.40E+08	ND .	ND_	NO	NO	ND	ND	ND	ND ND
			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+
Trichioroethene	7:87	6.29E+08	ND	ND	ND	ND	ND	ND	ND	ND
ļ			0.00E+00	0.00€+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+
Toluene	9:62	5.82E+07	ND	ND .	ND	NO	ND	ND	ND	ND
			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+
1,1,2-Trichlorethane	10:18	7.30E+08	ND	ND	ND ND	ND	_ ND	ND	ND	ND
	2202410	00.0000.0000.000.000	1.53E+07	5.29E+06	1.04E+07	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+
Tetrachloroethene	aU:45	9.4QE+D8	33	28	55	ND	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane	11:88	8.24E+08	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0,00E+00	0.D0E+
11117 - TEASCHIOLOGUISTIG	11.00	Q.24C +Ud	0.00E+00	ND ND	NO NO	ND_	_ ND	NO	ND	ND
Ethylbenzene	11:93	4.88E+07	ND ND	0.00E+00 ND	0.00E+00	0.00E+00	0.00+300.0	0.00E+00	0.00E+00	0.00E+
		-1.50E TO/	0.00E+00	0.00E+00	ND OF A CO	ND NO.	ND OOF 100	ND	ND	ND
I.		1,27E+08	ND ND	ND ND	0.00E+00 ND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E 4
meta and para – Xviene	12:11			r vier	110]	ND .	ND .	ND	ND	ND
meta and para - Xylene	12:11	1,275,400		0.00F+00		0 me+m	O ME LAST	0.005 - 0-	0.00	A
			0.00E+00	0.00E+00 ND	0.00E+00	0.00E+00	0,00E+00	0.00E+00	0.00E+00	
	12:11 12:7 8	4.76E+07		0.00E+00 ND 0.00E+00		0.00E+00 ND 0.00E+00	0.00E+00 ND 0.00E+00	0.00E+00 ND 0.00E+00	0.00E+00 ND 0.00E+00	0.00E+ ND 0.00E+

NO = not detected; analyte is below the reportable limit of quantitation for this sample

RT = retention time ul = microliter

In. Hg = inches of mercury

Concentrations reported in micrograms per liter (ugA.)

ARF = average response factor

ml = millither

4/20/95

TABLE B-2 QUALITY ASSURANCE/QUALITY CONTROL REPORT DAILY MID-POINT, BLANK ANALYSIS, AND LAST GC TEST RUN

APRIL 20, 1995

PID/ELCD #2

		<u> </u>	ILY MID-F	AIRT	TOTAL DE		FLE: 244B	
		1		OINI	BLANK	LASI	GC TEST	RUN
STANDARD CONC. (ug/L)		5000	AVERAGE	i	AMBIENT AIR	5000	AVERAGE	
INJECTION VOLUME(uL)		1,00	RESPONSE	PERCENT	500	1.00	RESPONSE	PERCENT
COMPOUND/WEIGHT(ug)	RT	0.00500	FACTOR	DIFFERENCE	_	0.00500	FACTOR	DIFFERENCE
Dichlorodifluoromethane	2:69	0			0.00E+00	0		
RF		0.00E+00	1.15E+08	NA.	ND ND	0.00E+00	1.15E+08	NA
Vinyl chloride	3:02	0			0.00E+00	0		
RF		0.00E+00	3.69E+08	NA NA	ND	0.00E+00	3.69E+08	NA.
Chloroethane	3:31	0			0.00E+00	0		
RF	_	0.00E+00	1.19E+08	NA NA	ND ND	0.00E+00	1.19E+08	NA
Trichlorofluoromethane	3:50	0			0.00E+00	o		
RF		0.00E+00	4.01E+08	NA NA	ND	0.00E+00	4.01E+08	NA
1,1,2-Trichloro-trifluoroethane	4:15	0			0.00E+00	0		-
RF	 	0.00E+00	9.15E+08	NA NA	ND	0.00E+00	9.15E+08	NA NA
1,1-Dichloroethene (PID)	4:16	90467			0.00E+00	85431		
BF	1.55	1.81E+07	2.13E+07		ND.	1.71E+07	2.13E+07	-20
Methylene chloride	4:66	0			0.00E+00	0		
RF		0.00E+00	7.52E+08	NA NA	ND	0.00E+00	7.52E+08	ŊA
trans-1,2-Dichloroethene	4:96	3234960			0.00E+00	2898698		
RF		6.47E+08	7.06E+08		ND ND	5.80E+08	7.06E+08	
1,1 - Dichloroethane	5:41	3579341			0.00E+00	3431667		
RF Cir. 1.2 Diahlarantana		7.16E+08	6.67E+08	7	ND	6.86E+08	6.67E+08	3
Cis-1,2-Dichloroethene RF	6:04	3533793			0.00E+00	4260268		
Chloroform	6,00	7.07E+08	8.03E+08	-12	ND.	8.52E+08	8.03E+08	6
RF	6:38	0 005.00	0.005 . 00	.,,	0.00E+00	_ 0		
1,1,1-Trichloroethane	0.05	0.00E+00	9.02E+08	NA	ND	0.00E+00	9.02E+08	<u>NA</u>
RF	6:65	5141639	0.005.00	أمد	0.00E+00	5363465	_	
Carbon tetrachloride	6:86	1.03E+09	9.02E+08	14	ND OOF 150	1.07E+09	9.02E+08	19
BF	0.50	0.00E+00	1.055 (00	NA	0.00E+00	0		
Benzene (PID)	7:09	295311	1.05E+09		ND 0.00E+20	0.00E+00	1.05E+09	NA
RF	'.03	5.91E+07	6.54E+07	4.5	0.00E+00	367249		
1,2-Dichloroethane	7:09	4100512	0.045707	-10	ND ND	7.34E+07	6.54E+07	12
RF	1.00	8.20E+08	8.40E+08	-2	0.00E+00	3960041	5.455.44	_
Trichloroethene	7:87	4377538	0.400706		0.00E+00	7.92E+08	8.40E+08	
RF	',0'	8.76E+08	8.29E+08	6	0.00E+00	4366096	2.005 . 22	_
Toluene (PID)	9:62	274554	0.232100		0.00E+00	8.73E+08 337937	8.29E+08	5
RF	7,52	5,49E+07	5.82E+07	-6	ND	6.76E+07	5 80E+07	46
1,1,2-Trichloroethane	10:16	3230879			0.00E+00	3674579	5.82E+07	16
RF]	6.46E+08	7.30E+08	-11	ND ND	7.35E+08	7.30E+08	4
Tetrachloroethene	10:45	4759372			0.00E+00	5495173		
RF		9.52E+08	9.40E+08	1	ND ND	1.10E+09	9,40E+08	17
1,1,1,2-Tetrachloroethane	11:88	0		··· ·	0.00E+00	0		
AF		0.00E+00	8.24E+08	NA.	ND	0.00E+00	8.24E+08	NA
Ethylbenzene (PID)	11:93	0			0.00E+00	0	5.2.72.700	
RF		0.00E+00	4.88E+07	NA	ND	0.00E+00	4.88E+07	NA
m,p-Xylene (PID)	12:11	537527			0.00E+00	667329		
RF	<u> </u>	1.08E+08	1.27E+08	15	ND	1.33E+08	1.27E+08	5
o-Xyiene (PID)	12:78	215372			0.00E+00	263389		
RF		4.31E+07	4.76E+07		ND	5.27E+07	4.76E+07	11
1,1,2,2-Tetrachioroethane	13:85	0			0.00E+00	0	55., 21	
RF	1	0.00E+00	6.79E+08	<u>NA</u>	ND	0.00E+00	6.79E+08	NA

4/20/95

ANALYST: David M. Pride

REVIEWED BY: Ragi Abraham

TABLE B-3 RESPONSE FACTORS FOR THREE POINT CALIBRATION SUBJECT SITE, CALIFORNIA

APRIL 4, 1995

PIDVELCO #1

							FILE: 04043PT.WK3
STANDARD CONC. (ug/L)		5000	5000	5000	AVERAGE		RELATIVE
INJECTION VOLUME(uL)		0.50	1.00	2,00	RESPONSE	STANDARD	% STANDARD
COMPOUND/WEIGHT(ug)	RT.	0.0025	0.0050	0.0100	FACTOR	DEVIATION	DEVIATION
Dichlorodifluoromethane	2:88	127751	321661	678242			i
cF		5.11E+07	6.43E+07	6.78E+07	8.11E+07	8.82E+08	14
Vinyl chloride	3:20	583393	1427054	3015904			
CF		2.25E+08	2.85E +08	3.02E +08	2.71E+08	4.02E+07	15
Chioroethane	3:52	375972	1400465	2549464			
CF	 	1.50E+08	2.80E+08	2.55E+08	2.28E+08	6.88E+07	30
Trichlorofluoromethane	3:73	556515	1507280	2728848			
CF		2.23E +08	3.01E+08	2.73E+08	2.66E+08	3.99E+07	15
1,1,2-Trichloro-trifluoroethane	4:34	889745	2159690	4321142			
CF		3.56E +08	4.32E+08	4.32E+08	4.07E +08	4.40E +07	11
1,1-Dichloroethene (PID)	4:32	76739	156919	314798			
CF		3.15E+07	3.14E+07	3.15E+07	3.15E +07	6.05E+04	
Methylene chloride	4:85	966419	2192098	4331149	·		
CF		3.87E +08	4.38E +08	4.33E+08	4.19E+08	2.85E+07	7
trans-1,2-Dichlorcethene	5:14	663 164	197 1748	4056722			
CF		3.45E +08	3.94E+08	4.08E +08	3.82E+08	3.21E+07	
1,1-Dichloroethane	5:58	749115	1654336	3213765			
CF		3.00E+08	3.31E+08	3.21E +08	3,17E+08	1.60E+07	. 5
cia-1,2-Dichloroethene	8:20	932 162	1958476	3716122			
Chloreform	 	3.73E +08	3.92E+08	3.72E+08	3,79E +08	1.12E+07	3
Chloroform	6:54	989251	2043148	3472941			
CF		3.88E+08	4.09E +08	3.47E+08	3.81E+08	3.12E+07	
1,1,1-Trichioroethane	6:80	650561	183 1993	3084238		1	
CF Carbon tetrachloride		3.40E+08	3.66E+06	3.08E +08	3.38E +08	2.90E+07	9
	7:00	983882	2226822	4558827			
CF	7.04	3.94E +08	4.45E+08	4.58E +08	4.32E+08	3.34E+07	
Benzene (PID)	7:21	198689	447312	675395			
CF 1.2 Dishipporthese	7.00	7.95E +07	0.95E+07	8.75E+07	8.55E+07	5,30E+06	6
1,2-Dichloroethane	7:23	810903	1708808	2663411		_	
CF Trichloroethene	8:00	3.24E +08	3.41E+08	2.66E+06	3.11E +08	3.93E +07	13
CF	8.00	885942	1910941	3533600	-		
Toluene (PID)	9:68	3.54E+08 237351	3.82E +08	3.53E+08	3.63E+08	1.64E +07	5
CF	3.50	9.49E +07	476101	843953	0.455.45		_
1,1,2-Trichloroethane	10:24	892367	9.52E+07 1984872	8.44E +07	9.15E +07	6.17E +06	7
CF	10,24	3.57E +08	3.97E+08	4158344	3 005 .00	0.045 . 03	_
Tetrachloroethene	10:50	954717	2058853	4.18E+08	3.90E+08	3.01E +07	8
CF	10.50	3.62E+06	4.11E+08	3786142 3.79E +08	3 O4E 40E	4.005 .07	_
1,1,1,2-Tetrac hioroethane	11:64	942 159	2098589	4470547	3.91E+08	1.80E+07	5
CF	1,1,54	3.77E+08	4.19E+08	4.47E+08	4 145 100	3 545 407	_
Ethylbenzene (PID)	11:85	190783	451147	996249	4.14E +08	3.54E +07	9
CF	100	7.63E+07	9.02E+07	9.96E+07	8 875 107	1 175 (07	
m,p-Xylene (PID)	12:01	555832	1128485	2470402	8.87E +07	1.17E+07	13
CF		2.22E +08	2.28E +08	2.47E+08	2.32E+08	1.34E +07	6
o-Xylene (PID)	12:82	197434	458314	1021140	2.550 100	1.546 707	
CF	"	7.90E +07	9.17E+07	1.02E+08	9.09E+07	1.16E +07	13
1,1,2,2-Tetrachlorcethana	13:59	884927	2002927	4298894	5.552 707	1.132 707	13
CF		3.54E +08	4.01E+08	4.30E+08	3.95E+08	3.63E+07	

RT = Retention Time

CF = Calibration Factor

ug/L ≖ Micrograms per Uter

ut. = Microliter

ug = Microgram

4/4/95

Analyst: Ragi Abraham

Reviewed by: David M. Pride

TABLE B-4 QUALITY ASSURANCE/QUALITY CONTROL REPORT LAB CONTROL SAMPLE, BLANK ANALYSIS, AND LAST GC TEST RUN

APRIL 4, 1995

PID/ELCD #1

	<u></u>	LAB CONTROL SAMPLE		BLANK	LAST GC TEST RUN			
STANDARD CONC. (ug/L)	:						HUN	
		1	AVERAGE	l	Ambient air	5000	AVERAGE	
INJECTION VOLUME(uL)		1.00	RESPONSE	PERCENT	500	1.00	RESPONSE	PERCENT
COMPOUND/WEIGHT(ug)	PT	0.00500	FACTOR	DIFFERENCE		0.00500	FACTOR	DIFFERENCE
Dichlorodifluoromethane	2:86	272628		į	0.00E+00	0		
RF RF		5.45E+07	6.11E+07	-11	ND ND	0.00E+00	6.11E+07	NA
Vinyl chloride	3:20	1237052			0.00E+00	0		
RF		2.47E+08	2.71E+08		ND ND	0.00E+00	2.71E+08	NA
Chloroethane	3:52	978618			0.00E+00	0		
RF	 	1.96E+08	2.28E+08	-14	ND.	0.00E+00	2.28E+08	NA NA
Trichlorofluoromethane	3:73	1207032	_ :		0.00E+00	0		
RF		2.41E+08	2.66E+08		ND.	0.00E+00	2.66E+08	NA
1,1,2-Trichloro-trifluoroethane RF	4:34	1904236	4 657	_	0.00E+00	0		
1,1-Dichloroethene (PID)	4.20	3.81E+08	4.07E+08	-6	ND ND	0.00E+00	4.07E+08	NA
RF	4:32	152487	0.455.07	ا م	0.00E+00	0	-	
Methylene chloride	4:85	3.05E+07 2140298	3.15E+07	-3	ND NO	0.00E+00	3,15E+07	NA NA
RF	4.63	4.28E+08	4.19E+08	ا	0.00E+00	0 005 100	4.405.00	
trans-1,2-Dichloroethene	5:14	1862956	4,136,700	2	ND 0.00E+00	0.00E+00	4.19E+08	<u>N</u> A
RF	"	3.73E+08	3.82E+08	2	ND	0.00E+00	2 925 4 09	NA
1,1-Dichloroethane	5:58	1644530	0.02L 100		0.00E+00	0.002+00	3.82E+08	NA
RF		3.29E+08	3.17E+08	4	ND ND	0.00E+00	3.17E+08	NA
Cis-1,2-Dichloroethene	6:20	1994130			0.00E+00	0.002+00	3.17ET08	NA.
RF		3.99E+08	3.79E+08	5	ND ND	0.00E+00	3.79E+08	NA
Chloroform.	6:54	2147966			0.00E+00	0.002100	3.73LT08	NA
RF		4.30E+08	3.81E+08	13	ND	0.00E+00	3.81E+08	NA
1,1,1-Trichloroethane	6:80	1864039			0.00E+00	0.002100	0.012100	. 00
RF		3.73E+08	3.38E+08	10	ND	0.00E+00	3.38E+08	NA
Carbon tetrachloride	7:00	2203341			0.00E+00	0	3,302,30	
RF		4.41E+08	4.32E+08	2	ND	0.00E+00	4.32E+08	NA
Benzene (PID)	7:21	433934			0.00E+00	0		
RF		8,68E+07	6.55E+07	2	ND	0.00E+00	8.55E+07	NA
1,2-Dichloroethane	7:23	1780289			0.00E+00	0		
RF	\perp	3.56E+08	3.11E+08	14	ND	0.00E+00	3.11E+08	NA
Trichloroethene	8;00	2001920		i	0.00E+00	0		
RF		4.00E+08	3.63E+08	10	ND	0.00E+00	3.63E+08	NA
Toluene (PID)	9:68	490884			0.00E+00	0		-
RF	ļ	9.82E+07	9.15E+07	7	ND ND	0.00E+00	9.15E+07	NA
1,1,2-Trichloroethane	10:24	2178464	•	ii	0.00E+00	0		
RF		4.36E+08	3.90E+08	12	ND ND	0.00E+00	3.90E+08	NA
Tetrachloroethene .	10:50	2160418		ll l	0.00E+00	0		
RF	144.51	4,32E+08	3.91E+08	11	ND ND	0.00E+00	3.91E+08	NA
1,1,1,2-Tetrachloroethane	11:84	2241907	4 4 4 7 4 4 4		0.00E+00	0		
RF Ethylbenzene (PID)	11:85	4.48E+08 470042	4.14E+08	8	ND ND	0.00E+00	4.14E+08	NA
RF	11:05	9.40E+07	9 075 1 07	.	0.00E+00	0		
m,p-Xylene (PID)	12:01	1204233	8,87E+07		ND 0.005 L00	0.00E+00	8.87E+07	NA
RF	'-"	2.41E+08	2.32E+08	<u> </u>	0.00E+00	0 005.00	0.005	
o-Xylene (PID)	12:62	476690	2.026700	4	0.00E+00	0.00E+00	2.32E+08	NA.
RF		9.53E+07	9.09E+07	5	0.00E+00	0.005.00	0.005 / 07	N. 4
1,1,2,2-Tetrachloroethane	13:59	2188405	2.552 07		0.00E+00	0.00E+00	9.09E+07	NA
RF		4.38E+08	3.95E+08		0.00E+00	0.00E+00	3 055 1 05	ķi a
			5.500 1 00 1		110	U.UUE+0U	3.95E+08	NA

4/4/95

ANALYST: Ragi Abraham

REVIEWED BY: David M. Pride

Table B-5 Environmental Support Technologies, Inc. Detection Limits for Soil Gas Surveys

Detection Limits or Reportable Limits of Quantitation for Halogenated and Aromatic Hydrocarbons are 1 ug/L when the injection volume is 500 uL. For lesser injection volumes detection limits are listed below.

Injection	Detection
Volume (uL)	Limit (ug/L)
500 250 200 100 80 60 50 40 20 10 5	1.0 2.0 2.5 5.0 6.3 8.3 10.0 12.5 25.0 50.0 100.0 500.0

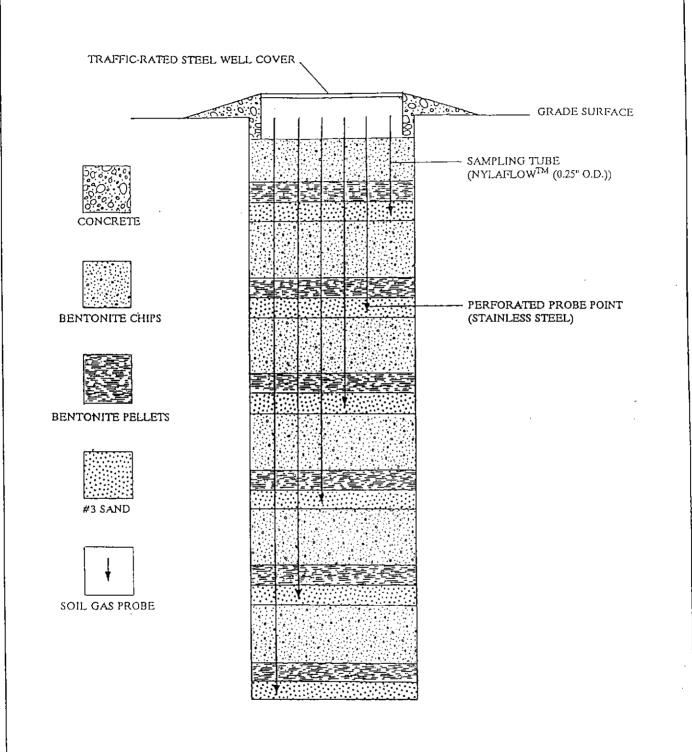
Appendix C

EST's STANDARD METHODS AND PROCEDURES

ENVIRONMENTAL SUPPORT TECHNOLOGIES, INC.

SOIL GAS SURVEYING METHODS AND PROCEDURES FOR NESTED SOIL GAS SAMPLING PROBES

Environmental Support Technologies, Inc. (EST) will perform soil gas surveys in accordance with Los Angeles Regional Water Quality Control Board (LARWQCB) "Requirements for Active Soil Gas Investigation" dated March 8, 1994. Some procedures may be modified based on evaluation of project needs. Modifications to these procedures, if necessary, will be approved prior to implementation and will be described in the soil gas survey report.


NESTED SOIL GAS PROBE INSTALLATION

Nested probes provide useful data for assessment of the vertical extent of potential soil contamination by VOCs at a particular point. Construction of a typical nested probe installation is shown in Figure 1. Details of typical nested probe construction are described below. Nested soil gas probes are typically installed at selected depths based on field screening of soil samples during drilling, or where a fine-grained lithology is encountered.

Upon drilling to total depth and completion of soil sampling, the soil boring will be converted to a nested probe installation. The borehole will typically be overdrilled by approximately one foot, and a total bore-hole depth measurement will be recorded. Depths below grade will be measured by sounding the borehole with a weighted engineer's tape graduated in 0.1-foot increments. The auger string will then be raised slightly and #3 Monterey sand will be poured down the hollow auger-stem until the boring has been backfilled approximately one foot, to the first depth of interest. A labeled and weighted soil gas probe will be lowered down the hollow auger-stem until the #3 sand-pack is encountered. The weighting of the distal end of the probe will ensure that the probe point remains in place during installation. Additional #3 Monterey sand will be added to the boring, burying the probe point and back-filling the boring to approximately one foot above the probe.

The two-foot-thick sand pack will allow for diffusion of soil gas into the sampling interval containing the probe point. In general, the sand pack should not exceed two feet in thickness. However, latest LARWQCB requirements for vertical profiling/nested probe soil gas surveys suggest that in deeper nested probe installations (greater than 100 feet below grade), the sand pack should extend approximately four feet above the probe point to allow for potential settling of the sand pack due to overburden pressure.

The sand pack interval will be capped with approximately 1.5-feet of bentonite pellets. Medium bentonite chips will then be used to back-fill the boring to about one foot below the next level of interest. The bentonite chips will then be hydrated and allowed to expand for about 15 minutes before introducing the next sand pack. The waiting period will allow the bentonite chips to hydrate, ensuring that potential downward migration of the sand pack material through the underlying bentonite materials will not occur.

VERTICAL SCALE:

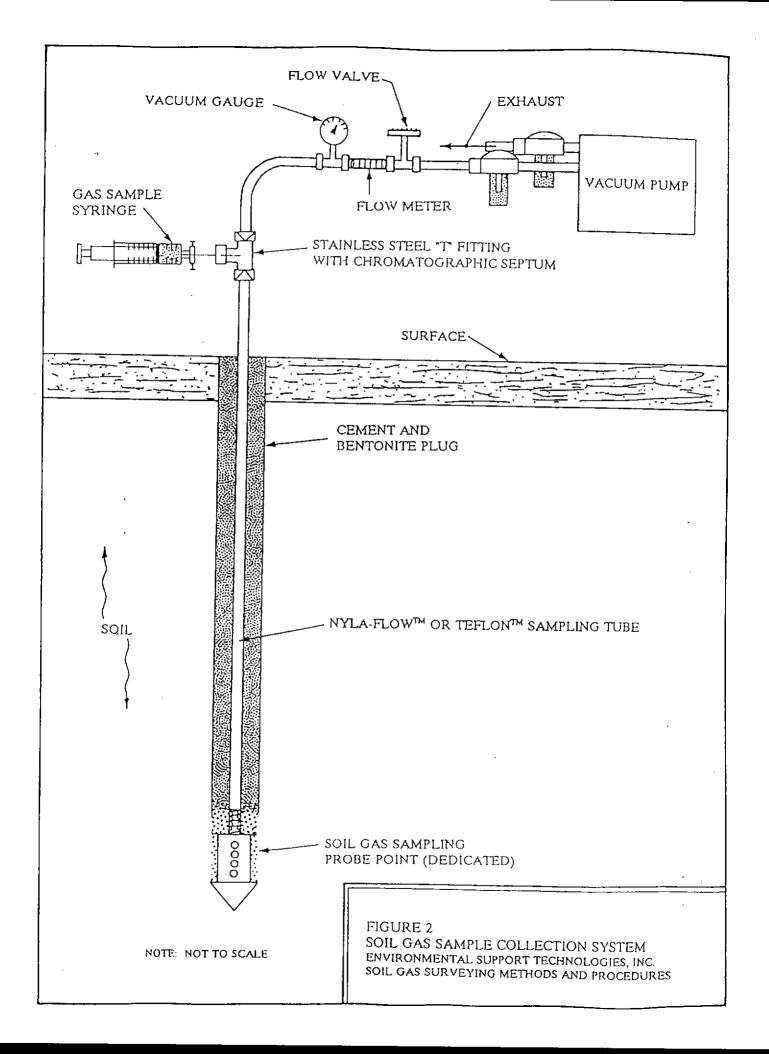
1-inch = 1-foot
BOREHOLE DIAMETER EXAGGERATED FOR CLARITY

FIGURE 1
CONSTRUCTION DETAIL OF A TYPICAL
NESTED SOIL GAS PROBE INSTALLATION
ENVIRONMENTAL SUPPORT TECHNOLOGIES, INC.
SOIL GAS SURVEYING METHODS AND PROCEDURES

After the waiting period, another sand pack/probe interval will be constructed using the procedures described above. This procedure will be repeated until grade surface is reached and probe installation is complete. To complete the nested probe installation at grade, a heavy-duty, traffic-rated well cover will be fitted and cemented in place.

SOIL GAS SAMPLE COLLECTION AND HANDLING

About one month following installation, per LARWQCB requirements, soil gas samples will be collected from each probe and will be analyzed on site for LARWQCB target analytes, including volatile halogenated and aromatic hydrocarbons. Soil gas samples will be collected from the nested probes using the soil gas sampling system as shown in Figure 2. The soil gas sampling system is constructed of stainless-steel, glass, NylaflowTM, and TeflonTM components. Instrumentation associated with the sampling system includes a calibrated flowmeter and vacuum gage. Vacuum integrity of the sampling system will be tested prior to, and after the soil gas survey using leak-down testing methods.


Nested soil gas sampling probes will be purged at a flowrate of approximately 100 milliliters per minute (mL/min). Site-specific probe purging and sample volume calibrations will be initially performed to evaluate the appropriate volume of gas to be purged from each probe prior to sample collection. This will be done by performing time-series sampling of at least one probe to evaluate trends in soil gas concentrations as a function of purge volume. If soil lithologies are consistent, a single determination will be adequate.

After probe purging, soil gas samples will be withdrawn from the moving sample stream using a glass syringe fitted with a disposable needle and MininertTM gas-tight valve. Soil gas samples will be analyzed by direct gas injection into a laboratory-grade, field-operable gas chromatograph (GC).

SOIL GAS SAMPLE ANALYSES

Soil gas samples collected from nested probes will be analyzed in the field using a field-operable GC equipped with a photo-ionization detector (PID) and an electrolytic conductivity detector (ELCD). The PID and ELCD will be configured in-series to analyze for EPA Method 8010/8020 target compounds as specified in the LARWQCB requirements (March 8, 1994) including halogenated and aromatic hydrocarbons.

Detection limits for the LARWQCB target compounds will be no more than one microgram per liter (µg/L) of gas except when compound concentration exceeds the initial calibration range. Soil gas samples may be analyzed for other constituents on a site-specific basis. Other common analyses methods include total volatile hydrocarbons (TVHs) as gasoline, mineral spirits, or jet fuel, and selected ketones. A series of quality assurance/quality control (QA/QC) analyses will be performed prior to, during, and following the analysis of soil gas samples. A summary of these QA/QC analyses is shown in Table 1, and each analysis described below.

TABLE 1

SUMMARY OF QUALITY ASSURANCE/QUALITY CONTROL ANALYSES FOR SOIL GAS SURVEYS

CALIBRATION AND LABORATORY CONTROL SAMPLES

2000 A COCH 22 CHA CHO CHASH 200 B 2		
		PRECISION
DESCRIPTION	FREQUENCY	GOAL
		%RSD or %DIFF
INITIAL THREE-POINT	At the beginning of the soil gas survey, unless the RPDs of the	
CALIBRATION	initial laboratory check sample or daily mid-point calibration	20-30(1)
(25 Target Compounds)	check samples exceed their goals.	, ,
INITIAL LABORATORY	At the beginning of the survey, following the initial three-	15 (2)
CONTROL SAMPLE (LCS)	point calibration.	, ,
(25 Target Compounds)		
DAILY MID-POINT	At the beginning of each day.	15 (3)
CALIBRATION CHECK		25 (3)
(12 Target Compounds)		ļ
T L CTD C C TOTAL		
LAST GC TEST RUN	At the end of each day.	20 (4)
(12 Target Compounds)		
	<u></u>	

FIELD CONTROL SAMPLES

DESCRIPTION	FREQUENCY	PRECISION GOAL
BACKGROUND SAMPLE (5)	Minimum one per day.	N/A
SYRINGE BLANK (5)	Minimum one per day.	N/A

%RSD = Percent Relative Standard Deviation calculated based on the initial three—point calibration.

%DIFF = Percent Difference between the response factor obtained from the LCS, the daily mid—point calibration, or the last GC test run and the average response factor initially calculated based on the three—point calibration.

N/A = Not applicable.

- (1) The %RSD goal for the initial three-point calibration will be 20 percent for all compounds except for Freon 11, Freon 12, Freon 113, chloroethane, and vinyl chloride for which the %RSD goal is 30 percent.
- (2) The %DIFF goal for the LCS will be 15 percent for all target compounds.
- (3) The %DIFF goal for the daily mid-point calibration check will be 15 percent for all compounds except for Freon 11, Freon 12, Freon 113, chloroethane, and vinyl chloride for which the %DIFF goal is 25 percent.
- (4) The %DIFF goal for the last GC test run will be 20 percent for all compounds except for Freon 11, Freon 12, Freon 113, chloroethane, and vinyl chloride for which the %DIFF goal is 30 percent.
- (5) A syringe/background sample will be analyzed using ambient air. If volatile organic compounds (VOCs) are not detected, the ambient air sample will represent the background sample and syringe blank. If VOCs are detected in the ambient air sample, a syringe blank will be analyzed using ultra-high-purity helium or nitrogen gas.

INITIAL MULTI-POINT EQUIPMENT CALIBRATION

The GC used for soil gas analyses will be calibrated using high-purity solvent-based standards obtained from certified vendors or using gas standards prepared in the field (for TVHs). Standards are typically prepared in high-purity methanol or dodecane solvent. Calibration using solvent-based standards will typically be performed using varying injection volumes of the stock solvent-based standard without dilution. If necessary, stock solvent-based standards will be diluted to an appropriate concentration. Diluted standards will be prepared by introducing a known volume of stock solvent-based standard into a known volume of high-purity solvent.

Initial GC calibration will be performed for EPA Method 8010/8020 compounds. The GC will be calibrated using three standard injections to establish a three-point calibration curve. The lowest standard will not be higher than five times the method detection limit (or $5 \mu g/L$). The percent relative standard deviation (%RSD) of the response factor (RF) for each target compound will not exceed 20 percent except for trichlorofluoromethane (FreonTM-11), dichlorodifluoro-methane (FreonTM-12), trichlorotrifluoromethane (FreonTM-113), chloroethane, and vinyl chloride which will not exceed 30 %RSD. Identification and quantitation of compounds in the field will be based on calibration under the same analytical conditions as for three-point calibration.

LABORATORY CONTROL SAMPLE (LCS)

A laboratory control sample (LCS) from a source other than the initial calibration standard will be used to verify the true concentration of the initial calibration standard. The LCS will include the LARWQCB target compounds and the RF for each compound will be within +/- 15 percent difference from the initial calibration.

DAILY MID-POINT CALIBRATION CHECK

Daily field calibration of the GC will consist of a mid-point calibration analyses using the same standard as used for the initial multi-point calibration. The daily mid-point calibration check will include the 12 target compounds as specified in the previously referenced LARWQCB requirements. The RF of each compound (except for FreonsTM-11, -12, and -113, chloroethane, and vinyl chloride) will be within 15 percent difference of the average RF from the initial calibration. The RF for the FreonsTM-11, -12, and -113, chloroethane, and vinyl chloride will be within 25 percent difference of the initial calibration. If these criteria are not met, the GC will be re-calibrated. Daily calibration will be performed prior to the first sample analysis of the day. One-point calibration will be performed for all compounds detected at a particular site to ensure accurate quantitation. Subsequent calibration episodes, if deemed necessary, will consist of at least one injection of the standard exhibiting a similar detector response as that of samples encountered in the field.

BLANK INJECTIONS

The syringes used for soil gas sample collection will be filled with ambient air or high-purity carrier-grade gas from a compressed gas cylinder. The ambient air or high-purity gas will be injected directly into the GC. The blank injection will serve to detect contamination of the syringe to be used for sampling and verify the effectiveness of equipment decontamination procedures.

END OF DAY GC TEST RUN

A LCS will be analyzed at the end of each day. The LCS will contain the same compounds as the daily mid-point calibration standard (minimum 12 compounds). The LCS must be from a second source independent from the initial multi-point calibration standard. The RF for each compound will be within 20 percent difference of the average RF for the initial calibration. If this criteria is not met, additional LCS will be analyzed to satisfy this criteria.

DECONTAMINATION PROCEDURES

Sampling equipment in contact with the soil gas sample stream will be decontaminated prior to initiation of sampling and prior to collection of each soil gas sample. Decontamination of soil gas sampling equipment will be conducted by baking in the gas chromatograph oven at approximately 160° Celsius.

SHORTENING THE GC RUN TIME

Shortening the GC run time is acceptable only if the chemist feels that doing so will not sacrifice the quality of data obtained and doing so meets the approval of appropriate client and agency personnel.

COMPOUND CONFIRMATION SAMPLE

As a means of compound confirmation, EST will collect one soil gas sample from a selected probe in a TedlarTM bag for off-site analysis by a certified laboratory using gas chromatography/mass spectrometric (GC/MS) methods.

REPORTING OF SAMPLE RESULTS AND QA/QC INFORMATION

Reporting of sample results and QA/QC information will be performed in accordance with the Los Angeles Regional Water Quality Control Board's "QA/QC and Reporting Requirement for Soil Gas Investigation" dated March 8, 1994.

VAPOR MONITORING EVENTS

Latest LARWQCB requirements for vertical profiling/nested probe soil gas surveys require a minimum of three vapor monitoring events to evaluate the consistency of the data.

April 5, 1994

Project No. 93-513

Mr. Mark Ziv Director TRANSGLOBE LIGHTING 8238 Lankersham Boulevard North Hollywood, California 91605

Report
Additional Subsurface Investigation
Former Sprayco, Inc. Facility
12600 Saticoy Street South
North Hollywood, California
(RWQCB File No. 111.1004)

Dear Mr. Ziv:

This report documents and presents the results of the soil gas survey and the additional subsurface investigation conducted by Geosystem Consultants, Inc. (Geosystem) at the former Sprayco, Inc. (Sprayco) facility at 12600 Saticoy Street South in the North Hollywood area of Los Angeles, California. The site location is shown in Figure 1 and a plan of the site is presented in Figure 2. The scope of the investigation was generally consistent with Geosystem's December 8, 1993 work plan, which was based on records maintained by the County of Los Angeles (the County) pertaining to a release of organic chemicals at the site in August 1990, data obtained from the initial subsurface investigation as presented in Geosystem's October 6, 1993 report, and discussions between the staff of the California Regional Water Quality Control Board, Los Angeles Region (RWQCB), the Los Angeles County Fire Department (LACFD), and Geosystem on November 18, 1993.

BACKGROUND INFORMATION

The following background information summarizes the August 1990 release, which triggered this and previous investigations and summarizes the findings of initial soil sampling and analyses conducted by Geosystem in July 1993.

August 1990 Incident

On August 17, 1990, at approximately 2:30 p.m., County personnel responded to a complaint from an employee at a neighboring facility of "leaking and fuming" drums in the rear (south) portion of the Sprayco site. The employee at the neighboring facility showed County personnel a "grayish pool of free-standing liquid," which apparently originated on the Sprayco site but which reportedly extended beneath the chainlink fence onto the adjacent facility to the south. When questioned, Sprayco personnel reportedly

stated that the pool of liquid resulted from paint stripping operations in which painted metal parts were soaked in a 55-gallon drum of "paint stripper," removed, and then "hosed down" with water. The pooled liquid was reportedly the "effluent" from this process. An undated summary of the incident prepared by LACFD personnel states that the "pool of stripper" was centered in the rear (south) portion of the site and extended east to west along 75 percent of the rear fence. From the Material Safety Data Sheet, County personnel determined that the paint stripper apparently contained methylene chloride (MEC) and petroleum distillates and that the spent paint stripper was a "hazardous waste."

Throughout the afternoon of August 17, 1990, County personnel continued to question Sprayco personnel and inspect the facility. In the process, County personnel determined, among other things, that "solvent-saturated rags" were disposed of along with the regular trash and that approximately one hundred 5-gallon cans of "waste paint were air-drying" on the rear (south) portion of the site.

In the evening of August 17, 1990 and continuing into the early hours of August 18, a waste disposal contractor, Containerized Chemical Disposal, placed suspected hazardous materials in twenty-six 55-gallon drums. The hazardous materials, which were described by County personnel as "soil and absorbent material," were ultimately disposed of under manifest in Morgan City, Louisiana. Sprayco subsequently claimed that the drums were filled with between 80 and 100 percent of vermiculite absorbent material.

Six samples of various media suspected of being contaminated were collected by the County for analysis. The six samples and the results of the analyses were as follows:

Sample No.	Sample Description	Analytical Results
1	Liquid from 55-gallon drum	660,000 mg/l methylene chloride 24,000 mg/l toluene
2	Soil from ground	ND<5 mg/kg for 8010/8020
3	Sludge from pool on ground	150 mg/kg methylene chloride 1,700 mg/kg 1,1,1-trichloroethane 200 mg/kg tetrachloroethylene 1,500 mg/kg toluene
4	Grey liquid from waste wash tanks at rear of building	3,100 mg/ℓ toluene
5	Saturated rags and newspapers	Not analyzed
6	Blue thick paint in dumpster	5,200 mg/t toluene 2,800 mg/t ethyl benzene 9,400 mg/t total xylenes 30 mg/t 1,1,1-trichloroethane

Of these six samples, only Samples 2 and 3 are of direct interest in the subject subsurface Based on the sampling records maintained by County personnel and discussions with County personnel on October 21, 1993, it appears that the soil sample (Sample 2) was collected at, or very near, the southern property line, in an unpaved strip beneath the chainlink fence. In a telephone conversation on October 21, 1993, County personnel stated that the sample of "dark moist soil" was collected from soil exposed at the ground surface and which had been inundated with the "grey liquid" mentioned above. The grey sludge sample (Sample 3) was collected from an asphalt paved area near the southern property line, again in an area that had been inundated by the "grey liquid." The results of the analyses indicate that the soil sample did not contain detectable concentrations of any of the halogenated organic compounds analyzed by U.S. Environmental Protection Agency (EPA) Methods 8010 and 8020. The sludge sample contained elevated concentrations of several halogenated and aromatic hydrocarbons, namely MEC, 1,1,1-trichloroethane (TCA), tetrachloroethylene (PCE), and toluene. It is noted that the samples appear to have been analyzed nearly five months after they were collected. As such, the data are of questionable value and are considered semiquantitative for the purposes of this evaluation.

Allowing for the potentially poor data quality, the results of the analyses of the soil sample do not indicate significant contamination of the native soils, although the results of the sludge sample analysis clearly indicate that organic chemicals or aqueous solutions containing organic chemicals were discharged to the ground surface. Based on conversations with County personnel, it is Geosystem's understanding that the Material Safety Data Sheets for one or more of the organic chemicals in use at the site also indicated that it (or they) contained elevated concentrations of metals. Accordingly, the County is concerned that near-surface soils at the site may have been impacted by metals.

INITIAL SUBSURFACE INVESTIGATION

The initial subsurface investigation conducted by Geosystem in July 1993 consisted of collecting and analyzing soil samples from shallow hand-augered borings in three suspected release areas identified by RWQCB staff during a site inspection on November 30, 1990. The investigation, reported on October 6, 1993, identified the presence of halogenated and aromatic volatile organic compounds (VOCs) in soil but at relatively low concentrations and generally limited to the upper 5 feet of the soil profile. The locations of the soil borings are shown in Figure 2 and the results of the soil sample analyses are summarized in Table 1.

Based on ground water contour maps prepared by the Watermaster for the Upper Los Angeles River Area between fall 1977 and fall 1981, the depth to ground water appears to fluctuate from 185 to 260 feet below grade. Based on this depth to ground water and the limitation of PCE to the upper 5 feet of the soil profile, Geosystem concluded that the potential for ground water quality to have been impacted was negligible.

ADDITIONAL SUBSURFACE INVESTIGATION

The findings of the initial subsurface investigation were discussed with the RWQCB and the LACFD at a meeting at the site on November 18, 1993. The RWQCB expressed concern regarding the lateral and vertical extent of VOCs in soil. The LACFD expressed concern about the possible presence of metals in near-surface soil. To address these regulatory agency concerns, Geosystem performed two phases of additional subsurface investigation; a soil gas survey for VOCs and the collection of soil samples for metals analysis. These investigative activities are described below.

Soil Gas Survey

The soil gas survey was subcontracted to AeroVironment, Inc. (AeroVironment) of Monrovia, California. AeroVironment is an RWQCB-approved soil gas contractor and all field and laboratory work was conducted in accordance with RWQCB-approved procedures. A copy of AeroVironment's soil gas survey procedures and results is provided in Appendix A to this report.

In the first phase of the survey, soil gas samples were collected from a nominal depth of 5 feet at 21 survey locations; 14 outside and to the south of the warehouse building, and 7 inside the building. Soil vapor sample locations are shown in Figure 2. The 14 outside survey locations were generally arranged on 25-foot centers in a rectangular grid pattern intended to provide comprehensive coverage in the area in which VOCs were reportedly discharged to the ground surface. The grid pattern is "tighter," i.e., the survey locations are closer together, in the southeast corner of the site, near the former solvent storage area where elevated concentrations of PCE have previously been detected in near-surface soil samples. Inside the building, three locations were surveyed in the vicinity of the former degreaser and four locations were surveyed in the vicinity of the former paint spray booths. The soil gas samples were analyzed on site in a mobile laboratory for halogenated and aromatic VOCs using U.S. Environmental Protection Agency (EPA) Methods 8010 and 8020, respectively. The first phase gas probes were retracted after collecting and analyzing the soil gas samples.

The results of the first phase of the survey were evaluated in the field and used to determine the scope of the second phase. The purpose of the second phase was to further delineate the vertical distribution of VOCs in soil gas. Specifically, soil gas samples were collected from a nominal depth of 15 feet in areas where the highest VOC concentrations were measured in the 5-foot samples. The Phase Two soil gas probes were driven adjacent to, and within 12 inches of, the Phase One soil gas probes.

A summary of the results of the soil gas sample analyses is presented in Table 2. A complete account of sample collection, analysis, and quality control procedures is presented in AeroVironment's March 4, 1994 report, which is included as Appendix A to this report. Of the compounds analyzed by EPA Methods 8010 and 8020, only 1,1-dichloroethylene (DCE), TCA, trichloroethylene (TCE), and PCE were detected in any of the soil gas samples.

Outside the building, DCE concentrations ranged from less than $1 \mu g/\ell$ (below the detection limit) to 4.19 $\mu g/\ell$. Inside the building DCE concentrations ranged from less than $1 \mu g/\ell$ to 3.07 $\mu g/\ell$. TCA concentrations were measured as high as 62.53 $\mu g/\ell$ outside the building at survey location V-6, and as high as 26.78 $\mu g/\ell$ inside the building at survey location V-18. Outside the building, TCE ranged in concentration from less than $1 \mu g/\ell$ to 20.26 $\mu g/\ell$ at survey location V-9. TCE was not detected inside the building. PCE concentrations were measured as high as 128.37 $\mu g/\ell$ outside the building at survey location V-11. Measured PCE concentrations inside the building ranged from 4.45 $\mu g/\ell$ to 6.21 $\mu g/\ell$. Of the four compounds detected, only PCE was detected at concentrations an order of magnitude above measured background values. The highest PCE concentrations occurred outside the building in the southeastern portion of the site in the vicinity of survey locations V-11 and V-14.

Phase Two vapor samples were collected at a nominal depth of 15 feet below grade at survey locations V-7, V-9, V-11, and V-12, and within 1 foot of the corresponding Phase One vapor sample locations. In general, concentrations at the nominal 15-foot depth were less than concentrations measured at the 5-foot depth, indicating that the downward migration of contaminants appears to be limited.

Soil Sampling and Analysis

Based on the results of the soil gas survey described above, and based on discussions with LACFD personnel, three soil sampling locations were selected to evaluate the possible presence of metals in soil. In addition, a background sampling location was selected to help evaluate the data in the context of naturally occurring metals concentrations. The soil sample locations, shown in Figure 2, were within the area of highest VOC concentrations reported in the soil gas survey outside of the building. The rationale for this strategy is that metals were most likely discharged to the ground surface in the same aqueous solution(s) as the VOCs. Accordingly, elevated metals concentrations can reasonably be expected to coincide with elevated VOC concentrations.

At each soil sampling location, a boring was hand-augered to 5 feet below grade. The borings were advanced using a 3.25-inch diameter hand auger. Undisturbed soil samples were collected from each boring at nominal depths of 0.5, 1.5, and 5 feet below grade. The samples were collected in 2-inch diameter by 6-inch long stainless steel sample sleeves. The

sample sleeves were housed in a hardened steel sampling attachment, which was driven into the ground using a geotechnical slide hammer. Immediately upon removal from the boring, the sampling attachment was disassembled and the soil-filled sample sleeve removed. The ends of the sample were trimmed flush and sealed with air-tight plastic end caps lined with Teflon foil. On completion of soil sampling activities, the borings were backfilled with bentonite chips, which were hydrated in place using potable water. Surface paving was restored with "cold-patch" asphalt to match existing grade. All drilling and soil sampling equipment was thoroughly cleaned prior to first use and between subsequent borings and sampling attempts. The cleaning procedure included scrubbing in an Alconox solution followed by potable and distilled water rinses. Drill cuttings were sealed in a 55-gallon drum, which is currently in storage at the site pending disposal.

The soil samples were labeled with a unique sample identification number and placed on ice in a cooler. The samples were hand-delivered to Del Mar Analytical (Del Mar) in Irvine, California, following standard chain-of-custody procedures. The 0.5-foot samples from each boring were analyzed for total priority pollutant metals. Based on the results, the 1.5-foot sample from location SB-6 was also analyzed for total priority pollutant metals. Del Mar is certified by the State of California to perform metals analysis. The results of the soil sample analysis are summarized in Table 3. Soluble threshold limit concentration (STLC) values and total threshold limit concentration (TTLC) values are also included in Table 3 for comparison purposes. Copies of the certificates of analyses are included as Appendix B to this report.

Several of the near surface soil samples contained certain metals at concentrations marginally above the corresponding STLC values and one soil sample (from Boring SB-6 at a depth of 3 to 9 inches below grade) contained cadmium and lead at concentrations slightly above 10 times the corresponding STLC values. None of the soil samples, however, contained metals at concentrations anywhere near the corresponding TTLC values. Cadmium and lead concentrations in the deeper soil sample from Boring SV-6 (18 to 24 inches below grade) were well below STLC values. Given these results, it is highly unlikely that the soluble metal content of any of the soil samples analyzed would exceed STLC values.

CONCLUSIONS AND RECOMMENDATIONS

It is clear that chemicals released in August 1990, when the facility was leased to Sprayco, have impacted the near-surface soils at the site. Based on the concentrations of organic chemicals in soil and in soil gas, however, the potential for ground water, which reportedly occurs at between 185 and 260 feet below grade, to have been impacted is negligible. Metals concentrations in near-surface soils in the spill area, while above background levels, are not "hazardous" and do not pose a threat to potential receptors via ground water or via

direct contact. Given the depth to ground water and the low concentrations of VOCs and metals in near-surface soils, it is Geosystem's opinion that no further site assessment is warranted.

Geosystem Consultants, Inc. appreciates the opportunity to be of service. If you have any questions, please do not hesitate to call.

Respectfully submitted,

GEOSYSTEM CONSULTANTS, INC.

Philip Miller, P.E. Project Manager

PM:bs

Attachments

Distribution: Addressee (2 copies)

Ms. Tizita Bekele - RWQCB, Los Angeles Region (3 copies)

Mr. Philip V. Kani - County of Los Angeles (1 copy)

			 		
•					·
•					
•				,	
●.				·	
					·
•					
•					
-					
•					
•					
•					

TABLES

TABLE 2 SUMMARY OF SOIL VAPOR SAMPLE RESULTS (All units are in $\mu g/l$)

SAMPLE LD.	<u>DEPTH</u> (feet)	<u>DATE</u>	1,1-DICHLORO- ETHYLENE	1,1,1-TRICHLORO- ETHANE	TRICHLORO- ETHYLENE	TETRACHLORO- ETHYLENE
SG-V1	5	1/11/94	2.08	29.04	5.23	37.09
SG-V2	5	1/11/94	2.59	33.28	4.92	38.28
SG-V3	5	1/11/94	2,70	31.37	3.57	29.82
SG-V4	5	1/11/94	2.88	37.54	3.69	34.00
SG-V5	5	1/11/94	1.28	29.47	8.98	48.62
SG-V6	5	1/11/94	3.92	62.53	8.54	65.65
SG-V7	5	1/11/94	2.50	44.05	4.60	91.61
SG-V7.1	5	1/12/94	2.94	52.92	4.94	95.95
SG-V7.2	15	1/12/94	4.19	55.12	7.52	63.97
SG-V7.2 ^(l)	15	1/12/94	2.14	19.86	ND<1 (2)	12.30
SG-V7.3	5	1/12/94	1.95	36.51	2.52	32.74
SG-V8	5	1/11/94	2.78	46.01	8.91	57.00
SG-V9	5	1/11/94	ND<1	46.91	20.26	59.07
SG-V9.1	15	1/12/94	1.73	47.62	18.44	76.02
SG-V10	5	1/12/94	1.17	51.27	11.24	67.01
SG-V11	5	1/12/94	1.04	51.09	3.63	128.37
SG-V11.1	15	1/12/94	1.05	28.35	2.88	39.30
SG-V11.1 (1)	15	1/12/94	ND<1	17.51	1.91	33.87
SG-V12	5	1/12/94	2.60	58.60	6.67	97.91
SG-V12.1	15	1/12/94	3.32	52.59	5.08	52.98
SG-V12.1 (1)	15	1/12/94	ND<1	20.61	ND<1	6.02
SG-V12.2	5	1/12/94	0.98	22.53	2.61	73.49
SG-V13	5	1/12/94	1.35	43.93	4.79	78.19
SG-V14	5	1/12/94	1.27	46.92	4.02	85.62
SG-V15	5	1/12/94	ND<1	10.33	ND<1	6.21
SG-V16	5	1/12/94	ND<1	11.85	ND<1	4.54
SG-V17	5	1/12/94	1.04	16.13	ND<1	4.45
SG-V18	5	1/12/94	3.07	26.78	ND<1	6.15
\$G-V19	5	1/12/94	2.34	21.31	ND<1	5.52
SG-V20	5	1/12/94	2.58	24.69	ND<1	5.29
SG-V21	5	1/12/94	1.68	14.83	ND<1	5.14
SG-VBG (3)	5	1/12/94	1.18	10.34	ND<1	3.35

NOTES:

Duplicate analysis.
 ND denotes Not Detected at detection limit indicated.

(3) Background sample.

TABLE 3 TOTAL METALS CONCENTRATIONS IN SOIL (All units in mg/kg - parts per million)

SAMPLE I.D.	<u>DEPTH</u>	<u>BARIUM</u>	<u>CADMIUM</u>	TOTAL <u>CHROMIUM</u>	COBALT	COPPER	<u>LEAD</u>	MERCURY	NICKEL	<u>VANADIUM</u>	ZINC
SB-5	3 - 9"	72	0.55	4.8	2.3	15	45	0.11	3.5	11	40
SB-6	3 - 9"	110	13	81	3.0	40	180	0.20	9.5	11	740
	18 - 24"	NA ⁽¹⁾	3.3	37	NA	16	8.9	ND<0.075	5.7	NA	180
SB-7	3 - 9"	170	ND<0.1 ⁽²⁾	15	8.7	24	17	0.16	9.6	29	49
BG-1	3 - 9"	66	ND<0.1	7.4	4.4	9.9	3.2	ND<0.075	5.3	19	35
STLC ⁽³⁾		100	1	560	80	25	5	0.2	20	24	250
3120		100	1	300	6 U	23	د	0.2	20	24	250
10 x STLC		1,000	10	5,600	800	250	50	2	200	240	2,500
TTLC(4)		10,000	100	2,500	8,000	2,500	1,000	20	2,000	2,400	5,000

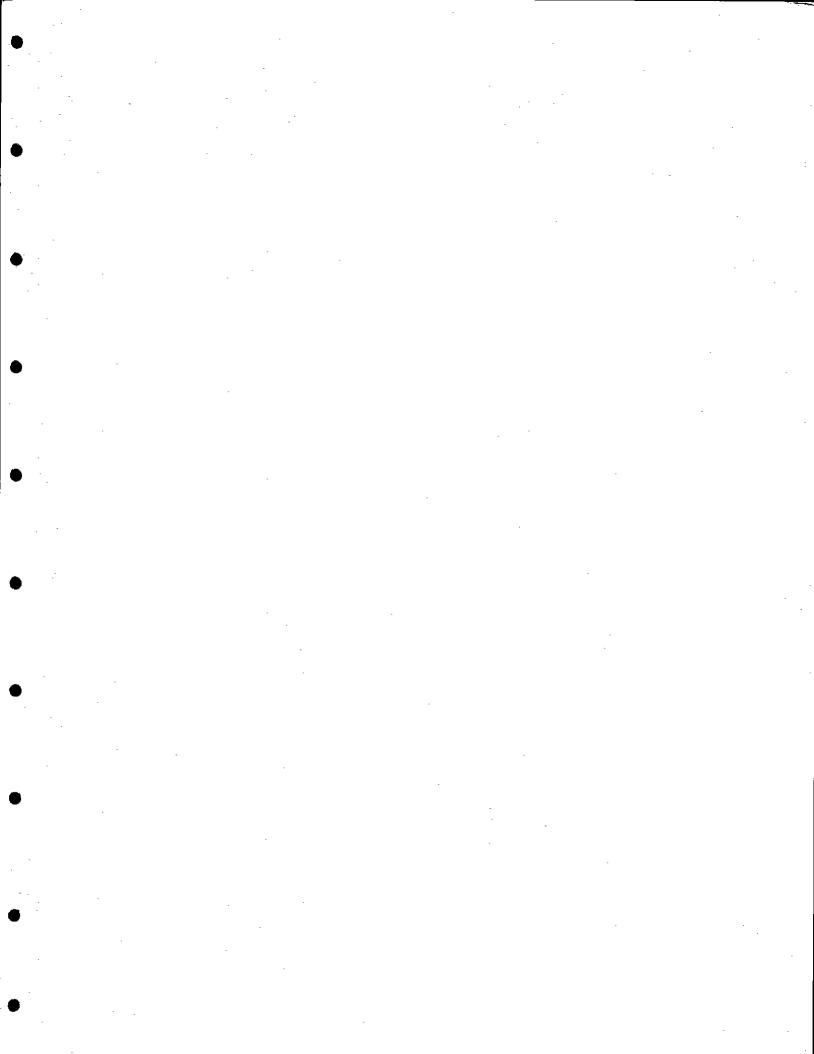
NOTES: (1) NA denotes Not Available.

(2) ND denotes Not Detected at detection limit indicated.
(3) Soluble Threshold Limit Concentration.
(4) Total Threshold Limit Concentration.

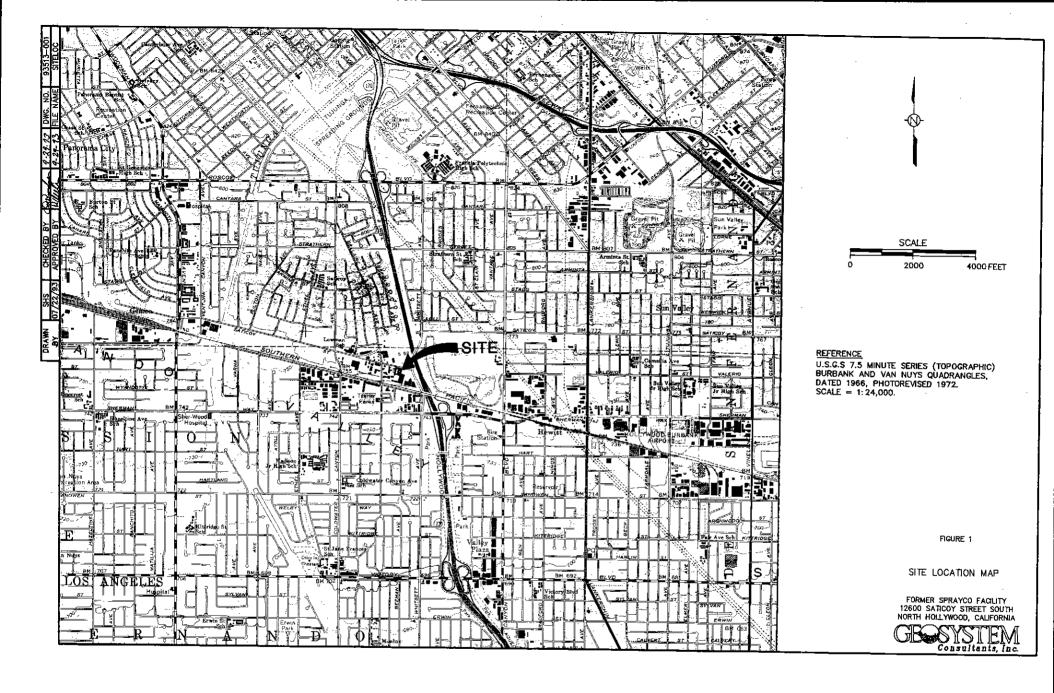
TABLE 1

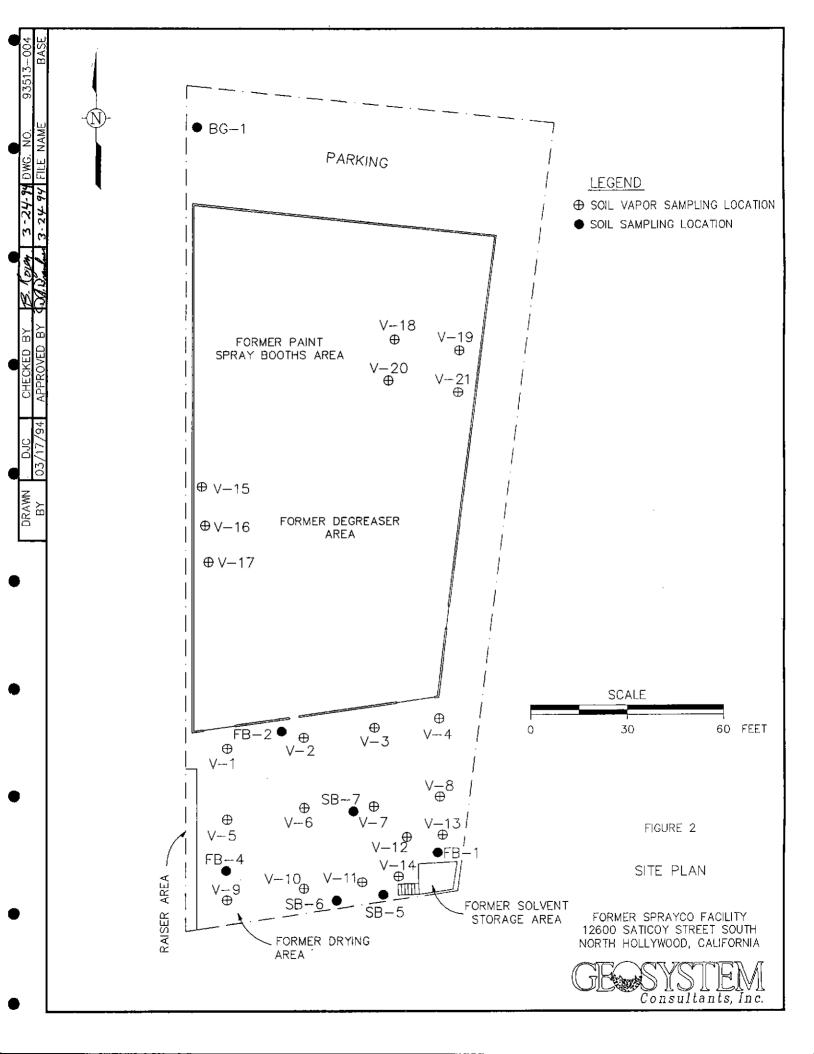
RESULTS OF SOIL SAMPLE ANALYSES

(All units are mg/kg - parts per million)


x 103 8 - 103 F

SAMPLE I.D.	DATE SAMPLED	TETRA CHLORO- ETHYL <u>ENE</u>	1,1,2- TRICHOLORO- <u>ETHANE</u>	1,1,1- TRICHLORO- ETHANE	TRICHLORO- ETHYLENE	DICHLORO- METHANE (1)	ETHYL <u>BENZENE</u>	TOLUENE	TOTAL XYLENES	TOTAL PETROLEUM HYDROCARBONS
FB-1 1.5'	07/08/93	32	ND<0.8	ND<0.8	ND<0.8	ND<1.6	ND<0.8	ND<0.8	ND<0.8	2,800
5'	07/08/93	1.1	ND<0.02	0.037	ND<0.02 ⁽²⁾	1.8	ND<0.02	ND<0.02	0.083	180
10'	07/08/93	ND<0.001	0.0017	ND<0.001	ND<0.001	0.014	ND<0.001	ND<0.001	0.0012	9.0
FB-2 1'	07/08/93 07/08/93	0.25 0.012	ND<0,004 ND<0.001	ND<0.004 ND<0.001	ND<0.004 ND<0.001	0.061 0.018	ND<0.004 ND<0.001	ND<0.004 ND<0.001	ND<0.004 0.0015	31 8.0
10'	07/08/93	0.005	ND<0.001	ND<0.001	ND<0.001	0.023	ND<0.001	ND<0.001	0.0015	14
FB-4 1' 5' 10'	08/02/93 08/02/93 08/02/93	0.021 0.029 0.0034	ND<0.001 ND<0.001 ND<0.001	0.0014 ND<0.001 ND<0.001	ND<0.001 0.0019 ND<0.001	ND<0.002 ND<0.002 0.011	0.0026 ND<0.001 ND<0.001	0.0029 ND<0.001 ND<0.001	0.015 ND<0.001 0.0013	22 13 20


NOTES: (1) Dichloroethene detected in lab blanks at concentrations ranging from ND<0.001 to 0.015 parts per million.


(2) Trichloroethylene tentatively detected at a concentration of 0.0079 parts per million.

FIGURES

· · · · · · · · · · · · · · · · · · ·					=
	•		•		•
					•
			-		-
					•
	-				•
		•			
				•	
		•			
:					
			•		
• '					
		· ·			
		Ē			
•					
			•		
	•	,			
•					
	•	•			
•					
		•		-	
•		•	-		
		•	÷		
					•
·					
•					
			:		
				•	
				•	
	-	•			
					-
•					
		÷			
					•
·					
		•	:	-	
		•	•		
				-	
		•			

APPENDIX A

4 March 1994

Please Reference: R93-300677R

Mr. Phil Miller Geosystem Consultants, Inc. 18218 McDurrmott East, Suite G Irvine, CA 92714

Subject: Soil Vapor Sampling, Former Sprayco Facility, 12600 Saticoy Street South, North

Hollywood, California. LARWQCB File No. 111.1004.

Dear Mr. Miller:

This report is prepared in accordance with AeroVironment Inc.'s proposal number P93-300677 and California Regional Water Quality Control Board, Los Angeles Regional (LARWQCB) File No. 111.1004.

SCOPE OF WORK

AeroVironment conducted soil vapor sampling at the former Sprayco Facility from January 11 to 12, 1994. The purpose of this soil vapor survey was to detect the horizontal distribution of volatile organic compounds (VOCs) in the subsurface in accordance with the well investigation plan (WIP) guidance document issued by the State of California, California Regional Water Quality Control Board, Los Angeles Region (LARWQCB).

Soil Vapor samples were collected from 30 sampling points. Twenty-six samples were collected at five feet below ground surface (bgs) and four from 15 feet bgs (SG-V12.1, SG-V7.2, SG-V11.1, and SG-V9.1). All samples were analyzed for chemical compounds on the LARWQCB analyte list (similar to the 8010/8020 analyte list).

The soil vapor analytical results presented in this report (Attachment 1) are obtained by sampling and analyzing soil vapor concentrations in the vadose zone. Analyte detection at a particular location is representative of vapor-phase contamination at that location. The presence of detectable concentrations of those analytes in the vadose zone is dependent upon several factors, including the presence of vapor-phase and liquid-phase VOC concentrations adequate to facilitate volatilization into the unsaturated zone.

Mr. Phil Miller R93-300677R 4 March 1994 Page 2 of 5

PROCEDURES

Field Procedures

The soil vapor samples were collected through 1/8-inch outside diameter Nylaflow tubing that was advanced into the ground via a steel probe. The steel probe was driven to the target depth and then withdrawn about four inches, leaving the drive tip behind. The Nylaflow tubing was then attached to a 20 cc syringe and the ambient air in the Nylaflow tube was extracted (purged).

A purge volume/contamination test was conducted at one location (SG-V18) and three soil vapor samples 18A, 18B, and 18C were collected after purging 20, 40, and 60 cc, respectively of soil vapor through the Nylaflow tube.

A purge volume of 40 cc yielded the highest concentration values, therefore, 40 cc was used as the purge volume for all five-foot soil vapor sample probes. A purge volume of 60 cc was used for all the 15-foot soil vapor probes.

Each soil vapor sample was collected and locked into a 20 cc syringe by way of a special three-way valve and delivered via a specially designed carrying case, within 20 minutes of sample collection, to the mobile laboratory.

A tedlar bag sample was collected from SG-7.1 and analyzed at AeroVironment in Monrovia, California. The bag sample was collected to provide a second column confirmation of the peaks identified by AeroVironment's soil vapor survey.

Mobile Laboratory Procedures

The soil vapor samples were analyzed on site in a mobile laboratory using a laboratory grade Hewlett-Packard 5890 Series II gas chromatograph (GC) equipped with a Hall electrolytic conductivity detector (ELCD), a photoionization detector (PID), and flame ionization detection (FID). The results were quantified using Hewlett-Packard's Chem-Station data system.

The soil vapor samples were directly injected into the chromatographic column through an injection port. The individual components present in the soil vapor were separated as they were drawn through the column by laboratory grade carrier gas. As each component (or group of components) exited the column and passed through the detectors, an electronic signal, proportional to the quantity of the component(s), was sent to the Chem-Station data system, which produced a plot of the detector response versus time (chromatogram of the soil vapor sample).

Quality Assurance/Quality Control

To optimize the quality of the measurement data, AeroVironment's sampling and analysis, quality assurance/quality control (QA/QC) program was implemented. This program includes using strict sampling protocols to protect the integrity of the soil vapor samples, observing calibration procedures to ensure that valid data are obtained, and analysis of QC samples to check sampling procedures and instrument precision.

Mr, Phil Miller R93-300677R 4 March 1994 Page 3 of 5

Sampling Protocols

The sampling procedures detailed in the preceding sections were designed to maintain sample integrity and reproducability of the data collected. To minimize the risk of cross-contamination, the protocols specified the use of purging and sampling equipment made of materials such as stainless steel and Teflon, which do not readily absorb organic chemicals. To further reduce the possibility of cross-contamination, areas where minimal or no contamination was suspected were sampled before those areas where high levels of contamination were expected. Purging only 40 cc of soil vapor before sample collection optimized the collection of a sample representative of the vapor in the soil. Purging, checking, and capping syringes before sample collection minimized the potential of contamination by ambient organic vapors. To minimize loss or degradation of the sample, minimal time is allowed to pass between sample collection and analysis. Use of gas-tight syringes with septa caps and transporting the syringes via a carrying case helped minimize the chance of sample loss during transport to the GC.

Instrument Calibration

Proper calibration of the GC contributed to measurement accuracy and precision and provided a means for detecting instrument malfunction. The GC calibration was verified with NIST-traceable (National Institute of Science and Technology) standards at the beginning of each sampling day. Instrument calibration is verified by analyzing a liquid standard sample called the Mid-Standard. Results of this analysis were compared to Mid-Standard results obtained from the Three-Point Instrument Calibration Curve. A minimum of nine calibration standards, including three aromatics and six halogenated compounds (representing short, medium and long retention time groups) must be checked. A Mid-Standard calibration check was required for all compounds detected at a particular site to ensure quantification. The response factor for each of the compounds was within 15 percent of the corresponding value from the Three-Point Calibration, otherwise corrective action was implemented. The Three-Point Instrument Calibration Curve is recalculated as necessary.

QC Samples

Two QC check samples were analyzed each working day, one at the beginning and one at the end to ensure acceptable analysis. The QC check sample was a standard obtained from a source different from the calibration standards. The QC check sample must contain the chemicals of concern at a minimum. A minimum of nine compounds must be checked. Response for each compound was within 20 percent of the corresponding true value as identified. If any QC check sample failed the requirement, the problem was resolved before proceeding with sample analysis. If soil vapor samples showed concentrations less than the laboratory reporting limit, a method detection limit (MDL) sample was analyzed at the end of each work day as the final QC check sample. For this project, a Mid-Standard was used at the end of the work day as the final QC check sample.

Mr. Phil Miller R93-300677R 4 March 1994 Page 4 of 5

Any GC column is susceptible to remnant contamination, especially after highly contaminated samples are analyzed (more than 100 micrograms per liter (μ g/L)). For this reason, equipment blanks (also called probe blank) or laboratory blanks are run as part of normal QC protocol. Equipment blanks are run at the start of each sampling day to document any residual contamination that remained in the sampling equipment that may interfere with sample analyses. The equipment blanks are collected in the same manner as an actual sample flowing through the entire sampling apparatus, but with uncontaminated or ultra zero-grade air from a commercial compressed-air cylinder. Laboratory blanks are run during each day of the sampling program to document any residual contamination that remained in the GC that may interfere with the sample analyses. The laboratory blanks are collected using a sampling syringe directly from an ultra zero-grade air source from a commercial compressed-air cylinder. Residual contamination found during blank analysis that may interfere with sample analyses was purged from either the equipment or the GC.

Method Detection Limit

The analytical MDL is defined as the minimum concentration that a substance can be measured according to a particular analytical method with 99 percent confidence that the minimum concentration measured is a real concentration with a value above zero. The MDL for the soil vapor analyses of VOCs, using analytical methods similar to United States Environmental Protection Agency (USEPA) analytical Methods 8010/8020, were established before this investigation as 1.0 μ g/L. The MDL was established by analyzing NIST-traceable standards and calculating the concentration of the smallest response signal that could be resolved. This process was repeated seven times and the standard deviation was calculated. The MDL is established as three times the standard deviation of the seven sample analyses. The MDL reported in this investigation is 1.0 μ g/L.

DISCUSSION OF SOIL VAPOR RESULTS

Thirty soil vapor samples were analyzed using analytical methodology similar to USEPA Methods 8010/8020. Attachment 1 contains the analytical results and soil vapor sampling logs, Attachment 2 contains of the QA/QC data, and Attachment 3 contains the second column confirmation, Attachment 4 contains chromatograms for soil vapor sample SG-V7, and Attachment 5 contains chromatograms for soil vapor confirmation sample SG-V7.1.

Halogenated VOCs were detected in all soil vapor probes sampled and analyzed at the site. Summary of analytical results are shown in Table 1. Soil vapor probe locations are shown in Figure 1. Compounds detected were tetrachloroethene (PCE) (up to $141.28 \,\mu g/L$), 1,1-dichloroethene (up to $3.92 \,\mu g/L$), 1,1-trichloroethane (up to $62.53 \,\mu g/L$), and trichloroethene (up to $20.26 \,\mu g/L$). The highest concentrations of halogenated VOCs were detected in soil vapor samples collected from probes located in the area of the former solvent

Mr. Phil Miller R93-300677R 4 March 1994 Page 5 of 5

storage area. Soil vapor probe SG-11.2 located adjacent to the former solvent storage area, revealed the highest concentration of PCE at $141.28 \mu g/L$.

Results for PCE were out of the linear calibration range of the ELCD but within the PID calibration range. All QC requirements were met by the PID and are reported in the QC results. PCE results were calculated by using the responses from the PID.

The highest levels of halogenated VOCs appear to be confined to the area near the former solvent storage tank area in the southeast portion of the Property.

AeroVironment Inc., appreciates the opportunity to provide analytical services to Geosystem Consultants, Inc. If you have any questions or require further information, please do not hesitate to contact us.

Sincerely.

Stuart Berge

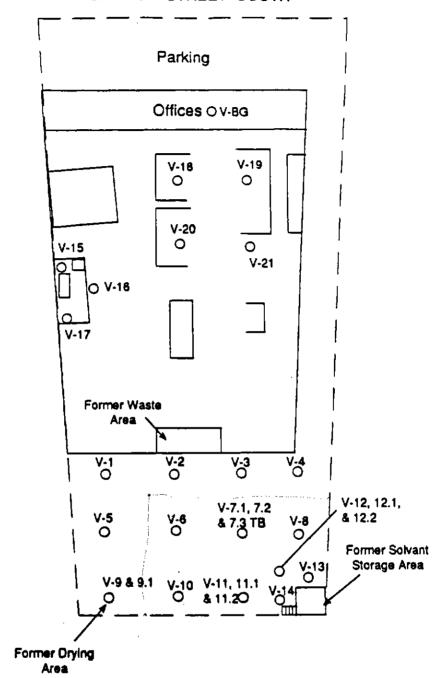
Environmental Geologist

Bill Wyman, R.G.

California Registered Geologist #4959

SB/BW/ljs Attachments

TABLE 1. Summary of Soil Vapor Analytical Results 12600 Saticoy Street South, North Hollywood, California


•						ţ	Soil Vap	or Probe	Location	ns						2 ₀∷i	
Analyte Unit ^a	Detection Limit	SG-V1 5' 1/11/94 1137	SG-V2 5' 1/11/94 1157	SG-V3 5' 1/11/94 1215	SG-V4 5' 1/11/94 1235	SG-V5 5' 1/11/94 1255	SG-V6 5' 1/11/94 1317	SG-V7 5' 1/11/94 1339	SG-V8 5' 1/11/94 1358	SG-V9 5' 1/11/94 1418	SG-V10 5' 1/12/94 1438	SG-V11 5' 1/12/94 1457	SG-V12 5 1/12/94 1517	SG-V13 5' 1/12/94 1537	SG-V14 5' 1/12/94 1555		SG-V15 5' 1/12/94 1144
1,1-Dichloroethene (1,1-DCE)	1	2.08	2.59	2.70	2.88	1.28	3.92	2.50	2.78	BRLb	1.17	1.04	2.60	1.35	1.27	2.94	BRL
1,1,1-Trichloroethane (1,1,1-TC/	A) 1	29.04	33.28	31.37	37.54	29.47	62.53	44.05	46.01	46.91	51.27	51.09	58.60	43.93	46.92	52,92	10.33
Trichloroethene (TCE)	1	5.23	4.92	3.57	3.69	8.98	8.54	4.60	8.91	20.26	11.24	3.63	6.67	4.79	4.02	4.94	BRL
Tetrachloroethene (PCE)	1	37.09	38.28	29.82	34.00	48.62	65.65	91.61	57.00	59.07	67.01	126.37	97.91	78.19	85.62	95.95	6.21

								Soil	e Vapor Pr	obe Locatio	ns	10:1				5:1	5:1
	SG-V16 5' 1/12/94 1203	SG-V17 5' 1/12/94 1222	SG-V18 5' 1/12/94 1259	SG-V19 5' 1/12/94 1335	SG-V20 5' 1/12/94 1355	SG-V21 5' 1/12/94 1415	SG-V12.1 15' 1/12/94 1455		SG-V7.2 15' 1/12/94 1542	SG-V7.2D ^c 15' 1/12/94 1542	SG-V11.1 15' 1/12/94 1620	SG-V11.1D 15' 1/12/94 1620	SG-V9.1 15' 1/12/94 1700	SG-VBG ^d 5' 1/12/94 1716	SG-V12.2 5' 1/12/94 1740	SG-V11.2 5' 1/12/94 1758	SG-V7.3 5' 1/12/94 1815
1,1-DCE	BRL	1.04	3.07	2.34	2.58	1.68	3.32	BRL	4.19	2.14	1.05	BRL	1.73	1.18	0.98	BRL	1.95
1,1,1-TCA	11.85	16.13	26.78	21.31	24.69	14.83	52.59	20.61	55.12	19.86	28.35	17.51	47.62	10.34	22.53	26.08	36.51
TCE	BRL	BRL	BRL	BRL	BRL	BRL	5.08	BRL	7.52	BRL	2.88	1.91	18.44	BRL	2.61	1.68	2.52
PCE	4.54	4.45	6.15	5.52	5.29	5.14	52.98	6.02	63.97	12.30	39.30	33.87	76.02	3.35	73.49		32.74

a μg/L = micrograms per liter
b BRL = below the laboratory reporting limit of less than 1 microgram per liter

c Duplicate d Background

SATICOY STREET SOUTH

LEGEND

- O Soil Vapor Sampling Location
- TB Tedlar Bag Sample for Second Column Confirmation

Scale (feet)

80 40

Aero Vironment Inc. 222 East Huntington Drive Monrovia, California 91016

SOIL VAPOR SAMPLE LOCATIONS

Former Sprayco Facility 12600 Saticoy St. So.

North Hollywood, CA

Project No. 300677

FIGURE

attechmenet

Soil Vapor Sample Collection Log

Project name: Geosystem Consultants

Analysis date: 01/11/94

Project#: 300677

Sample	Syringe	Sample	Probe	Purge	Purge	Purge	Sampled	
Number	Number	Time	Depth(ft)	Flow(cc/m)		Vol(cc)	Ву	Comments
SG-V1	4	11:37	5	NA	NA	40	KJ/BH	•
SG-V2	6	11:57	5	NA	NA	40	KJ/BH	
SG-V3	7	12:15	5	NA	NA	40	KJ/BH	
SG-V4	24	12:35	5	NA	NA	40	KJ/BH	
SG-V5	31	12:55	5	NA	NA	40	KJ/BH	
SG-V7	10	13:17	5	NA	NA	40	KJ/BH	
SG-V8	5	13:39	5	NA	NA	40	KJ/BH	
SG-V6	3	13:58	5	NA	NA	40	KJ/BH	
SG-V9	2	14:18	5	NA	NA	40	KJ/BH	
SG-V10	32	14:38	5	NA	NA	40	KJ/BH	
SG-V11	25	14:57	5	NA	NA	40	KJ/BH	
SG-V12	1	15:17	5	NA	NA	40	KJ/BH	
SG-V13	19	15:37	5	NA	NA	40	KJ/BH	
SG-V14	7	15:55	5	NA	NA	40	KJ/BH	

Analytical Results for Geosystem Consultants

Sample date:	01/11/94	01/11/94	01/11/94	01/11/94	01/11/94	01/11/94	01/11/94
Sample time:	11:37	11:57	12:15	12:35	12:55	13:17	13:39
	11:38	11:58	12:18	12:37	13:00	13:24	13:43
Analysis time:	5.00	5.00	5.00	5.00	5.00	5.00	· 5.00
Probe depth:	\$G-V1	SG-V2	SG-V3	SG-V4	SG-V5	SG-V7	SG-V8
Compound Sample #:	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dichlorodifluoromethane		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloromethane	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Vinyl chloride	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trichlorofluoromethane	<1.0	2.59	2.70	2.88	1.28	3.92	2.50
1,1-Dichloroethene (1,1-DCE)	2.08	2.59 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dichloromethane (Methylene chloride)	<1.0		<1.0	<1.0	<1,0	<1.0	<1.0
trans-1,2-Dichloroethene(t-1,2-DCE)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethane (1,1-DCA)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,2-Dichloroethene (c-1,2-DCE)	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0
Chioroform	<1.0		31.37	37.54	29.47	62.53	44.05
1,1,1-Trichloroethane (1,1,1-TCA)	29.04	33.28	<1.0	<1.0	<1.0	~1.0	<1.0
Carbon tetrachloride	<1.0	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0
Benzene	<1.0	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloroethane (1,2-DCA)	<1.0	<1.0	3.57	3.69	8.98	8.54	4.60
Trichloroethene (TCE)	5.23	4.92	3.57 <1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloropropane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dibromomethane	<1.0	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0
Bromodichloromethane	<1.0	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0
cis-1,3-Dichloropropene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Toluene	<1.0	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0
trans-1,3-Dichloropropene	<1.0	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloroethane (1,1,2-TCA)	<1.0	<1.0	29.82	34.00	48.62	, 91:61 _	୍57.00
Tetrachloroethene (PCE)	37.09	38.28	29.62 <1.0	<1.0	<1.0	<1.0	<1.0
Dibromochloromethane	<1.0	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0 ે	<1.0
Chlorobenzene	<1.0	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0
1,1,1,2-Tetrachloroethane	<1.0	<1.0		<1.0	<1.0	<1.0	<1.0
Ethylbenzene	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0
m&p-Xylene	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0
o-Xylene	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0
Bromoform	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0
1,1,2,2-Tetrachloroethane	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0
Bromobenzene	<1.0	<1.0	<1.0	<1.U	×1.0	• • •	
1,2,3,-Trichloroethane				-4.0	<1.0	<1.0	<1.0
1,3-Dichlorobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,4-Dichlorobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichlorobenzene	<1.0	<1.0	<1.0	<1.0	×1.0	••-	

Results reported in ug/L 2/28/94,10:48 AM [0111.XLW]SUMREP.XLS

Analytical Results for Geosystem Consultants

	Sample date:	01/11/94	01/11/94	01/11/94	01/11/94	01/11/94	01/11/94	01/11/94
	Sample time:	13:58	14:18	14:38	14:57	15:17	15:37	15:55
	Analysis time:	14:03	14:22	14:42	15:02	15:22	15:40	16:00
	Probe depth:	5.00	5.00	5.00	5.00	5.00	5.00	5.00
Compound	Sample #:	SG-V6	SG-V9	SG-V10	SG-V11	SG-V12	SG-V13	SG-V14
Dichlorodifluoromethane		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloromethane		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Vinyl chloride		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroethane		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trichlorofluoromethane		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethene (1,1	-DCE)	2.78	<1.0	1.17	1.04	2.60	1.35	1.27
Dichloromethane (Methy	ylene chloride)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,2-Dichloroethen		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethane (1,1		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,2-Dichloroethene (<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform		<1.0	< <u>1.0</u>	<1.0	<1.0	<1.0	<1.0	<1-0-
1,1,1-Trichloroethane (1	I,1,1-TCA)	46.01	46.91	(51.27)	51.09	58.6 0	43.93	46.92
Carbon tetrachloride		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Benzene		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloroethane (1,2	-DCA)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trichloroethene (TCE)	-	8.91	20.26	11.24	3.63	6.67	4.79	4.02
1,2-Dichloropropane		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dibromomethane		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromodichloromethane		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,3-Dichloropropene	•	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Toluene		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,3-Dichloroprope	ene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloroethane (1	I,1,2-TCA)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Tetrachloroethene (PCE	≣)	65.65	- 59.07	67.01	128.37	97.91	78.19	85.62
Dibromochloromethane	!	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chlorobenzene		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1,2-Tetrachloroetha	ne	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Ethylbenzene		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0
m&p-Xylene		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0
o-Xylene		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0
Bromoform		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0
1,1,2,2-Tetrachloroetha	ne	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0
Bromobenzene		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.U
1,2,3,-Trichloroethane						0	~ A O	<1.0
1,3-Dichlorobenzene		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,4-Dichlorobenzene		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0
1,2-Dichlorobenzene		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	~1.0

Results reported in ug/L 2/28/94,10:48 AM [0111.XLW]SUMREP.XLS

Soil Vapor Sample Collection Log

Project name: Geosystem Consultants
Analysis date: 01/12/94
Project#: 300677

Sample	Syringe	Sample	Probe	Purge	Purge	Purge	Sampled	
Number	Number	Time	Depth(ft)	Flow(cc/m)	Vacuum	Vol(cc)	Ву	Comments
\$G-V7.1	26	11:21	5	NA	NA	40	KJ/BH	
SG-V15	2	11:44	5	NA	NA	40	KJ/BH	
SG-V16	10	12:03	5	NA	NA	40	KJ/BH	
SG-V17	30	12:22	5	NA	NA ·	40	KJ/BH	
SG-V18A	22	12:40	5	NA	NA	20	KJ/BH	
SG-V18B	20	12:59	5	NA	NA	40	KJ/BH	
SG-V18C	1	13:18	5	NA	NA	60	KJ/BH	
SG-V19	17	13:35	5	NA	NA -	40	KJ/BH	
SG-V20	6	13:55	5	NA	NA	40	KJ/BH	
SG-V21	4	14:15	5	NA	NA	40	KJ/BH	
SG-V12.1	9	14:55	15	NA	NA	60	KJ/BH	•
SG-V12.1D	9	14:55	15	NA	NA	60	KJ/BH	
SG-V7.2	32	15:42	15	NA	NA	60	KJ/BH	
SG-V7.2D	32	15:42	15	NA	NA	60	KJ/BH	
SG-V11.1	8	16:20	15	NA	NA	60	KJ/BH	
SG-V11.1D	8	16:20	15	NA	NA	60	KJ/BH	
ISG-V9.1	10	17:00	15	NA	NA	60	KJ/BH	
SG-V BACKGROUND	41	17:16	5	NA	NA	40	KJ/BH	
SG-V12.2	3	17:40	5	NA	NA	40	KJ/BH	
SG-V12.2 SG-V11.2	25	17:58		NA	NA	40	KJ/BH	
SG-V11.2 SG-V7.3	7	18:15	5	NA	NA	40	KJ/BH	

Analytical Results for Geosystem Consultants

	Sample date:	01/12/94	01/12/94	01/12/94	01/12/94	01/12/94	01/12/94	01/12/94
	Sample time:	11:21	11:44	12:03	12:22	12:40	12:59	13:18
	Analysis time:	11:29	11:47	12:08	12:27	12:47	13:06	13:25
	Probe depth:	5.00	5.00	5.00	5.00	5.00	5.00	5.00
Compound	Sample #:	SG-V7.1	SG-V15	SG-V16	SG-V17	SG-V18A	SG-V18B	SG-V18C
Dichlorodifluorometha		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloromethane		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Vinyl chloride		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroethane		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trichlorofluoromethan	ne	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethene (1,		2.94	<1.0	<1.0	1.04	1.88	3.07	2.79
Dichloromethane (Met	•	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,2-Dichloroethe		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethane (1		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1.2-Dichloroethene		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1-Trichloroethane	(1,1,1-TCA)	52.92	10.33	11.85	16.13	16.80	26.78	23.26
Carbon tetrachloride	, , ,	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Benzene		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloroethane (1	1,2-DCA)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trichloroethene (TCE	-	4.94	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloropropane	•	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dibromomethane		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromodichloromethan	ne	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,3-Dichloroprope	ene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Toluene		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,3-Dichloropro	pene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloroethane		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 5.22
Tetrachloroethene (Po		95.95	6.21	4.54	4.45	5.08	6.15	5.22 <1.0
Dibromochlorometha	ne	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0
Chlorobenzene		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0
1,1,1,2-Tetrachloroeti	hane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0
Ethylbenzene		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0
m&p-Xylene		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0
o-Xylene		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromoform		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-Tetrachloroet	hane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0 <1.0
Bromobenzene		<1.0	<1.0	<1.0	<1.0	<1.0	\$1.U	~1.0
1,2,3,-Trichloroethan	е			_		.4 A	<1.0	<1.0
1,3-Dichlorobenzene		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0
1,4-Dichlorobenzene		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0
1,2-Dichlorobenzene		<1.0	<1.0	<1.0	<1.0	<1.0	₹1,0	~1.U

Results reported in ug/L 2/28/94,11:26 AM [0112.XLW]SUMREP.XLS

Analytical Results for Geosystem Consultants

Sample date:	01/12/94	01/12/94	01/12/94	01/12/94	01/12/94	01/12/94	01/12/94
Sample date.	13:35	13:55	14:15	14:55	14:55	15:42	15:42
•	13:44	14:04	14:23	15:02	15:22	15:45	16:06
Analysis time:	5.00	5.00	5.00	15.00	15.00	15.00	15.00
Probe depth:	5.00 SG-V19	SG-V20	SG-V21	SG-V12.1	SG-V12.1D	SG-V7.2	SG-V7.20
Compound Sample #:	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dichlorodifluoromethane	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloromethane	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Vinyl chloride	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroethane	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trichlorofluoromethane		2.58	1.68	3.32	<1.0	4.19	2.14
1,1-Dichloroethene (1,1-DCE)	2.34	2.56 <1.0	<1.00 <1.0	<1.0	<1.0	<1.0	<1.0
Dichloromethane (Methylene chloride)	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0
trans-1,2-Dichloroethene(t-1,2-DCE)	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethane (1,1-DCA)	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,2-Dichloroethene (c-1,2-DCE)	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	<1.0	24.69	14.83	52.59	20.61	55.12	19.86
1,1,1-Trichloroethane (1,1,1-TCA)	21.31	24.69 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Carbon tetrachloride	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0
Benzene	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloroethane (1,2-DCA)	<1.0	<1.0 <1.0	<1.0 <1.0	5.08	<1.0	7.52	1.46
Trichloroethene (TCE)	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloropropane	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0
Dibromomethane	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromodichloromethane	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,3-Dichloropropene	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Toluene	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,3-Dichloropropene	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloroethane (1,1,2-TCA)	<1.0	5.29	5.14	52.98	6.02	63.97	12.30
Tetrachloroethene (PCE)	5.52	5.29 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dibromochloromethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chlorobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1,2-Tetrachloroethane	<1.0	<1.0	<1.0	<1.0	<1.0°	<1.0	<1.0
Ethylbenzene	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0
m&p-Xylene	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0
o-Xylene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromoform	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-Tetrachloroethane	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromobenzene	<1.0	<1.U	31.0				
1,2,3,-Trichloroethane		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-Dichlorobenzene	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,4-Dichlorobenzene	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.2-Dichlorobenzene	<1.0	₹1.0	\$1.0	•			

Results reported in ug/L 2/28/94,11:26 AM [0112.XLW]SUMREP.XLS

Analytical Results for Geosystem Consultants

	Sample date:	01/12/94	01/12/94	01/12/94	01/12/94	01/12/94	01/12/94	01/12/94
	Sample time:	16:20	16:20	17:00	17:16	17:40	17:58	18:15
	Analysis time:	16:25	16:44	17:03	17:21	17:43	18:04	18:22
	Probe depth:	15.00	15.00	15.00	5.00	5.00	5.00	5.00
Compound	Sample #:	SG-V11.1	SG-V11.1D	SG-V9.1	SG-V BACKGROUND	SG-V12.2	SG-V11.2	SG-V7.3
Dichlorodifluorometh		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloromethane		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Vinyl chloride		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroethane		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trichlorofluorometha	ne	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethene (*	-	1.05	<1.0	1.73	1.18	0.98	<1.0	1.95
Dichloromethane (Me		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,2-Dichloroeth		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethane (<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,2-Dichloroether		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1-Trichloroethane	e (1.1.1-TCA)	28.35	17.51	47.62	10.34	22.53	26.08	36.51
Carbon tetrachloride		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Benzene		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloroethane (1.2-DCA)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trichloroethene (TCI	· · · · · · · · · · · · · · · · · · ·	2.88	1.91	18.44	<1.0	2.61	1.68	2.52
1,2-Dichloropropane		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dibromomethane		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromodichlorometha	ane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,3-Dichloroprop	ene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Toluene		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0
trans-1,3-Dichloropre	opene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0
1,1,2-Trichloroethan	e (1,1,2-TCA)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	32.74
Tetrachioroethene (F		39.30	33.87	76.02	3.35	73.49	141.28	32.74 <1.0
Dibromochlorometha	· · · · · · · · · · · · · · · · · · ·	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0
Chlorobenzene		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0
1,1,1,2-Tetrachloroe	thane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0
Ethylbenzene		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0
m&p-Xylene		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0
o-Xylene		<1.0	<1.0	`<1,0	<1.0	<1.0	<1.0	<1.0
Bromoform		<1.0	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0
1,1,2,2-Tetrachloroe	thane	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0
Bromobenzene		<1.0	<1.0	<1.0	<1.0	<1.U	~1.0	~1.0
1,2,3,-Trichloroethau	ne		_			<1.0	<1.0	<1.0
1,3-Dichlorobenzene	÷	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0	<1.0
1,4-Dichlorobenzene		<1.0	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0
1,2-Dichlorobenzene		<1.0	<1.0	<1.0	<1.0	~1.0	~1.0	.1.0

Results reported in ug/L 2/28/94,11:26 AM [0112.XLW]SUMREP.XLS diedinolis.

Sticental Action of the Control of t

Soil Vapor Calibration Log

Project name: <u>Geosystem Consultants</u> Analysis date: <u>01/11/94</u>

		Project#					
Sample Number	Sample Type	Syringe Number	Sample Date	Sample Time	Sampled By	Comments	
EB-1 MID STANDARD 1 DC STANDARD 1 DC STANDARD 2	EB1 RM1 RM2 RM3	0 Hamilton 1uL Hamilton 1uL Hamilton 1uL	01/11/94	NA NA NA NA	KJ/BH Jay Jay Jay		

AeroVironment Inc.

QC Results for Geosystem Consultants

Sample date:	01/11/94			01/11/94			01/11/94			01/11/94	 	
Sample time:	NA			NA			NA			NA		
Analysis date:				01/11/94			01/11/94			01/11/94		
Sample ID:				MID STAN	DARD 1		QC STANI	DARD 1		QC STANI	DARD 2	
Compound		Reference	diff		Reference	%diff		Reference	%diff		Reference	%diff
Dichlorodifluoromethane	<1.0	0.0	0.0	10.2	10.0	2.0	<1.0			11.4	10.0	14.3
Chloromethane	<1.0	0.0	0.0	9.8	10.0	-2.4	<1.0			10.3	10.0	2.6
Vinyl chloride	<1.0	0.0	0.0	10.0	10.0	-0.3	<1.0			10.3	10.0	3.4
Chloroethane	<1.0	0.0	0.0	8.9	10.0	-11.0	<1.0			11.0	10.0	10.1
Trichlorofluoromethane	<1.0	0.0	0.0	9.3	10.0	-7.3	<1.0			11.4	10.0	14.2
1,1-Dichloroethene (1,1-DCE)	<1.0	0.0	0.0	9.7	10.0	-3.3	23.1	20.0	15.4	10.8	10.0	7.6
Dichloromethane (Methylene chloride)	<1.0	0.0	0.0	9.6	10.0	-4.1	<1.0			11.0	10.0	9.6
trans-1,2-Dichloroethene(t-1,2-DCE)	<1.0	0.0	0.0	9.6	10.0	-4.2	23.8	20.0	18.9	10.6	10.0	6.1
1,1-Dichloroethane (1,1-DCA)	<1.0	0.0	0.0	9.7	10.0	-2.9	<1.0			10.7	10.0	7.4
cis-1,2-Dichloroethene (c-1,2-DCE)	<1.0	0.0	0.0	9.7	10.0	-2.7	2 2.9	20.0	14.3	10.8	10.0	8.4
Chloroform	<1.0	0.0	0.0	9.7	10.0	-3.0	21.4	20.0	7.2	10.9	10.0	8.7
1,1,1-Trichloroethane (1,1,1-TCA)	<1.0	0.0	0.0	9.9	10.0	-1.3	21.3	20.0	6.3	10.6	10.0	6.4
Carbon tetrachloride	<1.0	0.0	0.0	9.8	10.0	-2.1	20.8	20.0	3.9	10.6	10.0	6.2
Benzene	<1.0	0.0	0.0	9.5	10.0	-5.0	21.5	20.0	7.5	9.8	10.0	-1.7
1,2-Dichloroethane (1,2-DCA)	<1.0	0.0	0.0	9.8	10.0	-1.9	23.2	20.0	16.1	10.6	10.0	6.3
Trichloroethene (TCE)	<1.0	0.0	0.0	9.7	10.0	-3.2	23.3	20.0	16.7	10.6	10.0	6.0
1,2-Dichloropropane	<1.0	0.0	0.0	9.8	10.0	-2.3	21.1	20.0	5.6	10.6	10.0	6.3
Dibromomethane	<1.0	0.0	0.0	9.9	10.0	-1.0	<1.0			10.4	10.0	3.6
Bromodichloromethane	<1.0	0.0	0.0	9.7	10.0	-2.7	20.7	20.0	3.7	10.7	10.0	6.9
cis-1,3-Dichloropropene	<1.0	0.0	0.0	9.8	10.0	-2.4	<1.0			10.7	10.0	7.2
Toluene	<1.0	0.0	0.0	9.5	10.0	-5.0	20.9	20.0	4.6	9.9	10.0	-1.2
trans-1,3-Dichloropropene	<1.0	0.0	0.0	9.8	10.0	-2.3	<1.0			10.8	10.0	8.4
1.1.2-Trichloroethane (1,1,2-TCA)	<1.0	0.0	0.0	9.8	10.0	-1.8	<1.0			11.1	10.0	10.6 9.5
Tetrachloroethene (PCE)	<1.0	0.0	0.0	9.8	10.0	-1.6	21.4	20.0	6.8	10.9	10.0	9.5 7.0
Dibromochloromethane	<1.0	0.0	0.0	9.8	10.0	-2.3	20.9	20.0	4.7	10.7	10.0	-1.3
Chlorobenzene	<1.0	0.0	0.0	9.5	10.0	-5.0	20.4	20.0	2.0	9.9	10.0	-1.3 9.7
1,1,1,2-Tetrachloroethane	<1.0	0.0	0.0	9.6	10.0	-3.8	<1.0		4.0	11.0	10.0	9.7 -1.1
Ethylbenzene	<1.0	0.0	0.0	9.5	10.0	-5.3	20.2	20.0	1.2	9.9	10.0	-1.1 -1.9
m&p-Xylene	<1.0	0.0	0.0	9.4	10.0	-5.8	20.0	20.0	0.0	9.8	10.0	-1.9 -1.7
o-Xylene	<1.0	0.0	0.0	9.4	10.0	-5.7	23.3	20.0	16.4	9.8	10.0 10.0	-1.7 4.7
Bromoform	<1.0	0.0	0.0	9.6	10.0	-4.1	21.0	20.0	5.2	10.5	10.0	4.7
1,1,2,2-Tetrachloroethane				1			1			,,	10.0	-1.6
Bromobenzene	<1.0	0.0	0.0	9.4	10.0	-5.6	<1.0			9.8	10.0	-1.0
1,2,3,-Trichloroethane						_	1			9.7	10.0	-2.9
1,3-Dichlorobenzene	<1.0	0.0	0.0	9.4	10.0	-5.5	<1.0		4.0	9.7	10.0	-2. 9 -3.0
1,4-Dichlorobenzene	<1.0	0.0	0.0	9.4	10.0	-5.5	19.1	20.0	-4.3	9.7	10.0	-3.0 -4.7
1 2-Dichlorobenzene	<1.0	0.0	0.0	9.3	10.0	-7.3	18.7	20.0	-6.5		10.0	

1,2-Dichlorobenzene
Results reported in ug/L

Soil Vapor Calibration Log

Project name: Geosystem Consultants
Analysis date: 01/12/94
Project#: 200677

Sample	Sample	Syringe	Sample	Sample	Sampled		
Number	Туре	Number	Date	Time	Ву	Comments	
B-1A	EB1	28	01/12/94	NA	KJ/BH		
MID STANDARD 1	RM1	Hamilton 1uL		NA	Jay		
C STANDARD 1	RM2	Hamilton 1uL		NA	Jay		
QC STANDARD 2	RM3	Hamilton 1uL	01/12/94	NA	Jay		
							·

AeroVironment Inc.

QC Results for Geosystem Consultants

Sample date:	01/12/94			01/12/94			01/12/94			01/12/94		
Sample time:	NA			NA			NA			NA		
Analysis date:	01/12/94			01/12/94			01/12/94			01/12/94		
Sample ID:	EB-1A			MID STAN	DARD 1		QC STANE	DARD 1		QC STAND	DARD 2	,
Compound		Reference	diff _		Reference	%diff		Reference	%diff		Reference	%diff
Dichlorodifluoromethane	<1.0	0.0	0.0	8.4	10.0		<1.0			9.7	10.0	-3.1
Chloromethane	<1.0	0:0	0.0	7.3	10.0	27.0	<1.0			7.2	10.0	£ 4
Vinyl chloride	<1.0	0.0	0.0	7.7	10.0	-17 B	<1.0			7.6	10.0	, 188 ,
Chloroethane	<1.0	0.0	0.0	8.2	10.0	-17-8	<1.0			8.8	10.0	-11.6
Trichlorofluoromethane	<1.0	0.0	0.0	9.0	10.0	-9.7	<1.0			9.8	10.0	-1.8
1,1-Dichloroethene (1,1-DCE)	<1.0	0.0	0.0	8.7	10.0	-13.0	23.9	20.0	19.7	8.7	10.0	-12.6
Dichloromethane (Methylene chloride)	<1.0	0.0	0.0	9.3	10.0	-7.1	<1.0			9.4	10.0	-5.6
trans-1,2-Dichloroethene(t-1,2-DCE)	<1.0	Q.O	0.0	8.8	10.0	-12.1	24.9	20.0	4	8.7	10.0	-13.1
1,1-Dichloroethane (1,1-DCA)	<1.0	0.0	0.0	9.6	10.0	-4.2	<1.0		4477.3	9.7	10.0	-2.8
cis-1,2-Dichloroethene (c-1,2-DCE)	<1.0	0.0	0.0	9.6	10.0	-3.9	24.6	20.0	22.0	9.8	10.0	-2.4
Chloroform	<1.0	0.0	0.0	9.9	10.0	-0.6	23.6	20.0	18.0	10.2	10.0	1.7
1,1,1-Trichloroethane (1,1,1-TCA)	<1.0	0.0	0.0	9.7	10.0	-2.8	23.0	20.0	15.0	9.6	10.0	-3.6
Carbon tetrachloride	<1.0	0.0	0.0	9.5	10.0	-4.8	22.2	20.0	11.2	9.5	10.0	-4.7
Benzene	<1.0	0.0	0.0	8.6	10.0	-13.6	20.8	20.0	3.9	8.4	10.0	-15.9
1,2-Dichloroethane (1,2-DCA)	<1.0	0.0	0.0	9.7	10.0	-3.0	25.1	20.0	5	9.8	10.0	-2.4
Trichloroethene (TCE)	<1.0	0.0	0.0	9.5	10.0	-5.2	24.7	20.0		9.6	10.0	-4.3
1,2-Dichloropropane	<1.0	0.0	0.0	9.8	10.0	-1.5	22.8	20.0	13.8	9.9	10.0	-1.0
Dibromomethane	<1.0	0.0	0.0	9.7	10.0	-3.4	<1.0			8.7	10.0	-13.1
Bromodichloromethane	<1.0	0.0	0.0	10.0	10.0	-0.3	22.4	20.0	11.9	9.4	10.0	-6.2
cis-1,3-Dichloropropene	<1.0	0.0	0.0	9.9	10.0	-1.4	<1.0			9.8	10.0	-2.2
Toluene	<1.0	0.0	0.0	8.8	10.0	-11.8	20.4	20.0	2.0	8.6	10.0	-14.2
trans-1,3-Dichloropropene	<1.0	0.0	0.0	9.9	10.0	-0.9	<1.0			10.1	10.0	1.5
1,1,2-Trichloroethane (1,1,2-TCA)	<1.0	0.0	0.0	10.3	10.0	2.7	<1.0			10.5	10.0	4.5
Tetrachloroethene (PCE)	<1.0	0.0	0.0	9.6	10.0	-3.7	22.5	20.0	12.3	9.8	10.0	-2.3
Dibromochloromethane	<1.0	0.0	0.0	10.1	10.0	0.7	22.2	20.0	11.0	10.0	10.0	-0.3
Chlorobenzene	<1.0	0.0	0.0	9.0	10.0	-9.6	20.3	20.0	1.3	8.9	10.0	-11.3 3.4
1,1,1,2-Tetrachloroethane	<1.0	0.0	0.0	10.1	10.0	1.5	<1.0			10.3	10.0	
Ethylbenzene	<1.0	0.0	0.0	9.0	10.0	-9.9	20.1	20.0	0.3	8.8	10.0	-11.6
m&p-Xylene	<1.0	0.0	0.0	8.9	10.0	-10.5	19.7	20.0	-1.4	8.8	10.0	-11.9
o-Xylene	<1.0	0.0	0.0	9.0	10.0	-10.2	23.1	20.0	15.4	8.8	10.0	-11.8 -1.0
Bromoform	<1.0	0.0	0.0	9.7	10.0	-2.5	22.5	20.0	12.6	9.9	10.0	-1.0
1,1,2,2-Tetrachloroethane						_	1				40.0	-11.1
Bromobenzene	<1.0	0.0	0.0	9.0	10.0	-9.6	<1.0			8.9	10.0	-11.1
1,2,3,-Trichloroethane							1				40.0	-10.6
1,3-Dichlorobenzene	<1.0	0.0	0.0	9.0	10.0	-9.9	<1.0		F 0	8.9	10.0	-10.6 -10.7
1,4-Dichlorobenzene	<1.0	0.0	0.0	9.0	10.0	-10.2	19.0	20.0	-5.0	8.9	10.0	-10.7 -11.1
1,2-Dichlorobenzene	<1.0	0.0	0.0	9.0	10.0	-9.9	18.8	20.0	-6.1	8.9	10.0	-14.1

Results reported in ug/L

Air Tehnien (S)

ŔŖĠŎĸſĸĸĸŎĠŔŊĬŶ<mark>ĠŎŊŊŸĨ</mark>ŶŖŶŔŔŎŊŹ

AeroVironment Inc.

Second Column Confirmation

Sample ID: SG-7.1

Project name: Geosystem Consultants

Project #: 300677

Analysis: 8010/8020

Lab ID: Y-Truck

Sample date: 01/13/94

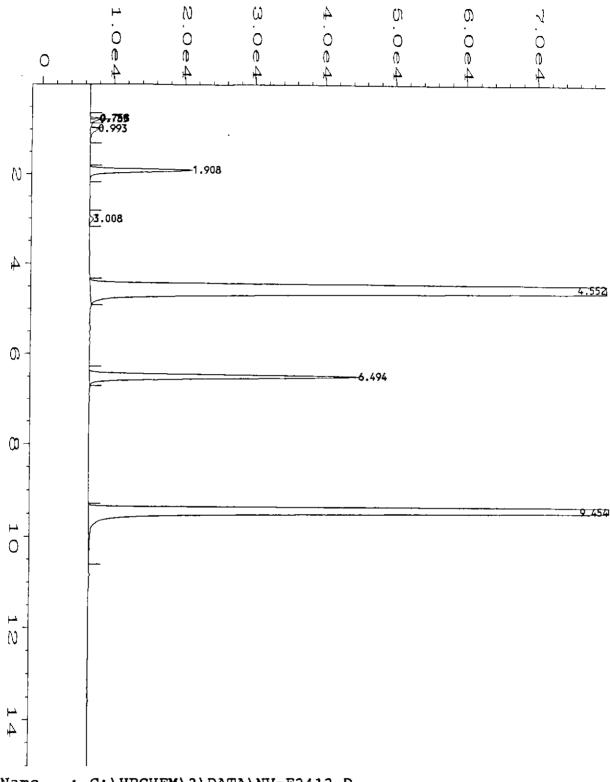
Analysis date: 01/18/94

Analysis time: 16:48

GC ID: GC/PID/HALL

Calibration date: 01/18/94

Compound


1,1-Dichloroethene (1,1-DCE)

1,1,1-Trichloroethane (1,1,1-TCA)

Trichloroethene (TCE)
Tetrachloroethene (PCE)

%शाः जितात्वता **द**ि

PZOTE AATKO PRATĀLĪJĀ PĀČĒĀM GRITODAVĀKOGĒMĀĀR

Data File Name	:	C:\HPCHEM\2\DATA\NV-F2412.D	
Operator	:	JAY BERGER	Page Number : 1
Instrument	:	A / D (EL	Vial Number :
_ Sample Name	:	SG-V7	Injection Number :
Run Time Bar Code	e:		Sequence Line :
Acquired on	:	11 Jan 94 01:24 PM	Instrument Method: SG-1.MTH
Report Created or	n:	11 Jan 94 01:39 PM	Analysis Method : SG-1.MTH
Sample Info	:		_

•

Area Percent Report

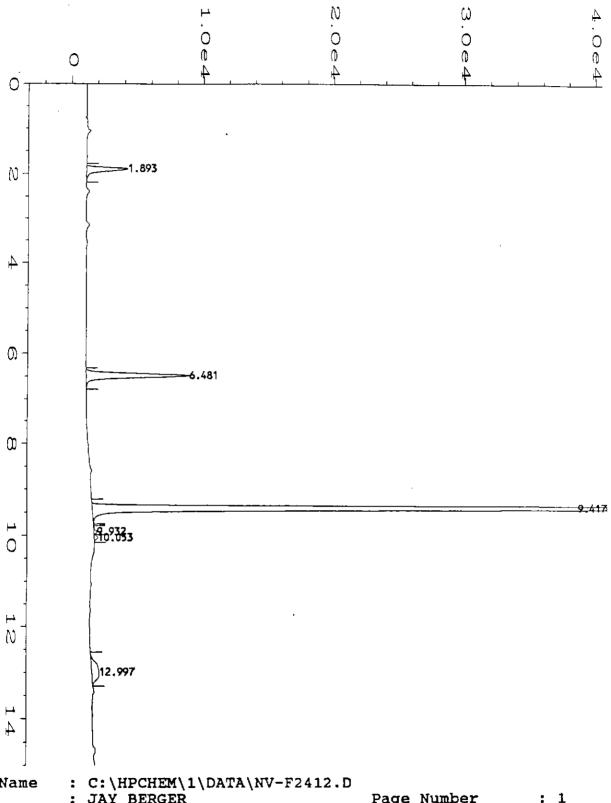
Data File Name : C:\HPCHEM\2\DATA\NV-F2412.D
Operator : JAY BERGER
Instrument : A / D (EL
Sample Name : SG-V7 Page Number : 1
Vial Number : Injection Number : Sequence Line : Run Time Bar Code:

Acquired on : 11 Jan 94 01:24 PM Instrument Method: SG-1.MTH Report Created on: 11 Jan 94 01:39 PM Analysis Method : SG-1.MTH

Sample Info :

Data File Name : C:\HPCHEM\2\DATA\NV-F2412.D
Operator : JAY BERGER Page Number : 2
Instrument : A / D (EL Vial Number : Injection Number : Sample Name : SG-V7 Injection Number : Sequence Line : Sequence Line : Acquired on : 11 Jan 94 01:24 PM Instrument Method: SG-1.MTH Report Created on: 11 Jan 94 01:39 PM Analysis Method : SG-1.MTH

Data File Name : C:\HPCHEM\2\DATA\NV-F2412.D


Operator : JAY BERGER Page Number : 3
Instrument : A / D (EL Vial Number : Sample Name : SG-V7 Injection Number : Run Time Bar Code: Sequence Line :

Acquired on : 11 Jan 94 01:24 PM Instrument Method: SG-1.MTH Report Created on: 11 Jan 94 01:39 PM Analysis Method : SG-1.MTH

Sig. 1 in C:\HPCHEM\2\DATA\NV-F2412.D

19	Pk#	Ret Time	Area	Height	Type	Width	Area %
							0.0101
	1	0.758	2556	1412	BV	0.032	0.0181
	2	0.785	4344	1284	VV	0.056	0.0307
	3	0.993	6441	1140	VB	0.074	0.0455
	4	1.908	71764	14399	BV	0.080	0.5073
	5	3.008	3565	542	BV	0.088	0.0252
	6	4.552	1884912	205215	VV	0.142	13.3257
	7	6.494	224724	37686	ΒV	0.094	1.5887
	8	9.454	1,19467E+007	2401732	BB S	0.082	84.4588

Total area = 1.4145E+007

Data File Name	:	C:\HPCHEM\	1\DATA\	NV-F2412.D			
Operator	:	JAY BERGER			Page Number	:	1
Instrument	:	5890 PID			Vial Number	:	
●Sample Name	:	SG-V7			Injection Number	:	
Run Time Bar Cod	de:				Sequence Line	:	
Acquired on	:	11 Jan 94	01:24 H	P M	Instrument Method	:	SG-1.MTH
Report Created	on:	11 Jan 94	01:39 I	PM	Analysis Method	:	SG-1.MTH
Sample Info	:				_		

•

Area Percent Report

Data File Name : C:\HPCHEM\1\DATA\NV-F2412.D

Operator : JAY BERGER Page Number : 1
Instrument : 5890 PID Vial Number :
Sample Name : SG-V7 Injection Number :
Run Time Bar Code: Sequence Line :

Acquired on : 11 Jan 94 01:24 PM Instrument Method: SG-1.MTH Report Created on: 11 Jan 94 01:39 PM Analysis Method : SG-1.MTH

Sample Info :

● Data File Name : C:\HPCHEM\1\DATA\NV-F2412.D

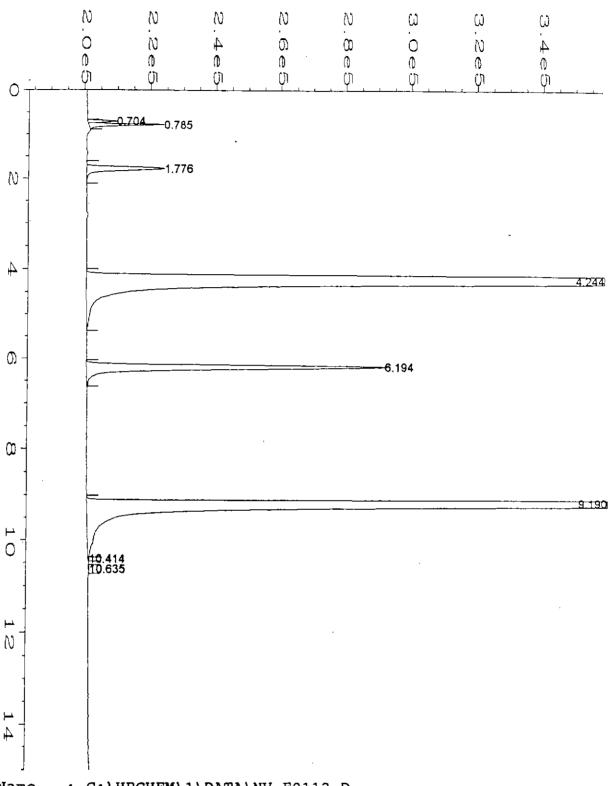
Operator : JAY BERGER Instrument : 5890 PID Page Number Vial Number Sample Name : SG-V7 Injection Number: Sequence Line :

Run Time Bar Code:

Acquired on : 11 Jan 94 01:24 PM Instrument Method: SG-1.MTH Report Created on: 11 Jan 94 01:39 PM Analysis Method : SG-1.MTH Data File Name : C:\HPCHEM\1\DATA\NV-F2412.D

Operator : JAY BERGER Page Number : 3
Instrument : 5890 PID Vial Number :
Sample Name : SG-V7 Injection Number :
Run Time Bar Code: Sequence Line :
Acquired on : 11 Jan 94 01:24 PM Instrument Method: SG-

Acquired on : 11 Jan 94 01:24 PM Instrument Method: SG-1.MTH Report Created on: 11 Jan 94 01:39 PM Analysis Method : SG-1.MTH


Sig. 1 in C:\HPCHEM\1\DATA\NV-F2412.D

, r.d	Pk#	Ret Time	Area	Height	Туре	Width	Area %	
	 1	1.893	17197	3125	BB	0.087	3.5753	
	2	6.481	48801	7769	BB	0.098	10.1458	
	3	9.417	399315	86615	BB	0.072	83.0176	
	4	9.932	1228	242	BV	0.076	0.2553	
	5	10.053	1434	281	VB	0.079	0.2980	
	6	12.997	13025	554	BV	0.320	2.7080	

Total area = 481001

OHIKOMAVIOGRAMS SOLDAVARORRONITRIMAVIONSAVRIBRISCAVIAL

Data File Name : C:\HPCHEM\1\DATA\NV-F0112.D
Operator : STEVE CHAN
Instrument : TRAILER 2
Jample Name : GEOSYSTEM 7.1
Run Time Bar Code:
Acquired on : 18 Jan 94 04:48 PM

Report Created on: 18 Jan 94 05:04 PM Sample Info : SECOND COLUMN CONFIRMATION

sg7.1

Page Number : 1
Vial Number :
Injection Number :

Sequence Line : Instrument Method: SG-1.MTH

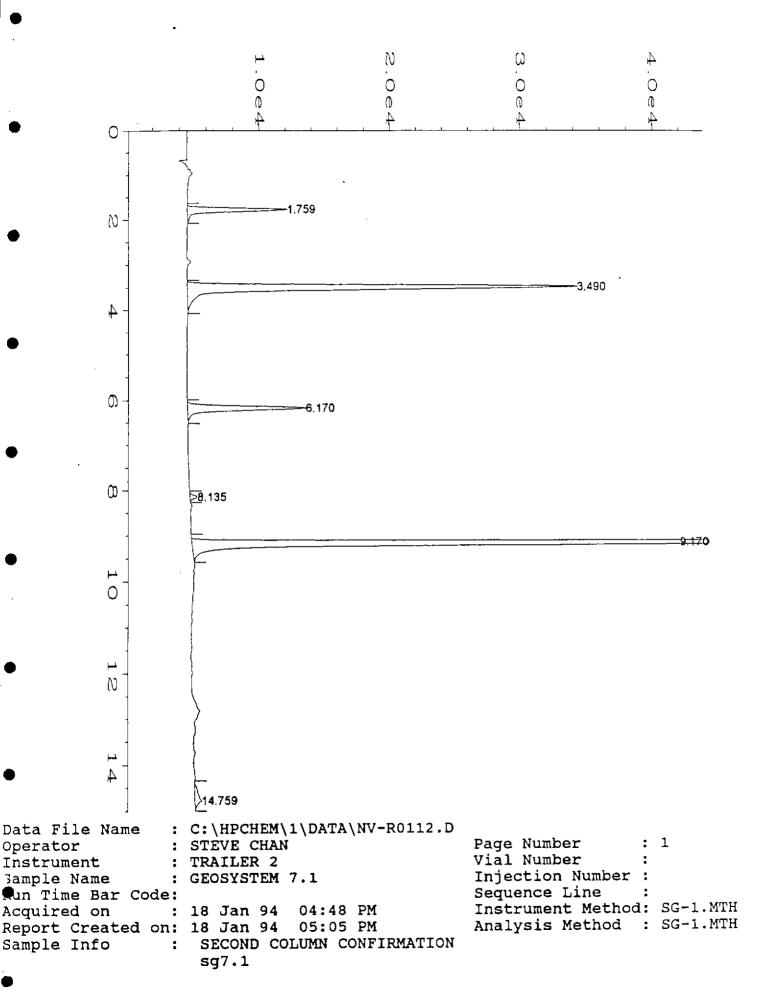
Analysis Method : SG-1.MTH

Area Percent Report

.ile Name : C:\HPCHEM\1\DATA\NV-F0112.D

Page Number : 1 ator : STEVE CHAN Vial Number : TRAILER 2 trument ample Name : GEOSYSTEM 7.1 Injection Number : Sequence Line :

Run Time Bar Code:


Instrument Method: SG-1.MTH Acquired on : 18 Jan 94 04:48 PM Report Created on: 18 Jan 94 05:04 PM Analysis Method : SG-1.MTH

Sample Info : SECOND COLUMN CONFIRMATION

sg7.1

Sig. 1 i	n C:\HPCHEM	I\1\DATA\NV-F011 Area	12.D Height	Type	Width	Area %
1 2 3 4 5 6 7 8	0.704 0.785 1.776 4.244 6.194 9.190 10.414	23772 68405 129279 4978203 592953 9909190 1639 2513	8756 22765 23545 565504 90659 1931072 402 370	PV VV BB BV BV PV VV	0.042 0.045 0.086 0.134 0.103 0.078 0.068 0.088	0.1514 0.4355 0.8231 31.6963 3.7753 63.0919 0.0104 0.0160

Total area = 1.5706E+007

Area Percent Report

Instrument Method: SG-1.MTH

File Name : C:\HPCHEM\1\DATA\NV-R0112.D

Page Number : STEVE CHAN rator Vial Number : TRAILER 2 istrument Injection Number : ample Name : GEOSYSTEM 7.1 Sequence Line : un Time Bar Code:

cquired on : 18 Jan 94 04:48 PM eport Created on: 18 Jan 94 05:05 PM

Analysis Method : SG-1.MTH ample Info : SECOND COLUMN CONFIRMATION

sq7.1

ig. 2 i	n C:\HPCHEM	\1\DATA\NV-R0112 Area 	2.D Height	Type	Width	Area %
1 2 3 4 5	1.759 3.490 6.170 8.135 9.170 14.759	41920 207095 59059 2795 564511 7098	7553 29575 8921 549 121412 497	BB BB BB BB BB BBA	0.089 0.108 0.103 0.082 0.072 0.180	4.7503 23.4674 6.6924 0.3167 63.9689 0.8043

stal area = 882477

			-					
•		•						
			•					
_								
•								
	·							
_								
		•						
_								
•								
_								
						-		
					•			
					•			
	:							
	•							
_								
•								
						٠		
								-
				·				
	•							
_								
•								

APPENDIX B

2852 Alton Ave., Irvine, CA 92714 1014 E. Cooley Dr., Suite A. Colton, CA 92324

16525 Sherman Way, Suite C-11, Van Nuys, CA 91406 943 South 48th St., Suite 114, Tempe, AZ 85281

(714) 261-1022 FAX (714) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (602) 968-8272 FAX (602) 968-1338

Geosystem Consultants, Inc. 18218 McDurmott East, Suite G

Irvine, CA 92714 Attention: Philip Miller Client Project ID: 93-513

Sprayco/Bellaire Lighting-North Hollywood

Sample Descript: Soil, BG-1; 3"-9" Lab Number:

DB00331

Sampled: Feb 2, 1994 Received: Feb 3, 1994 Analyzed: Feb 4-11, 1994

Reported: Feb 14, 1994

Analyte	EPA Method	STLC Max. Limit mg/L (ppm)	TTLC Max. Limit mg/Kg (ppm)	Detection Limit mg/Kg (ppm)	TTLC Sample Result mg/Kg (ppm)	RECEIVED
Antimony	6010	15	500	5.0	N.D.	***
Arsenic	6010	5	500	1.0	N.D.	CHECKY STEW
Barium	6010	100	10000	0.50	66	- NumberやV公司:高格
Beryllium	6010	0.75	75	0.10	N.D.	CONTRACTANTS, INC.
Cadmium	6010	1	100	0.10	N.D.	
Chromium (VI)	7196	5	500	0.25	N.D.	
Chromium (Total)	6010	560	2500	0.50	7.4	
Cobalt	6010	80	8000	0.50	4.4	
Copper	6010	25	2500	0.50	9.9	
Lead	6010	5	1000	1.0	3.2	
Mercury	7 4 71	0.2	20	0.075	N.D.	
Molybdenum	6010	350	3500	0.50	N.D.	
Nickel	6010	20	2000	0.50	5.3	
Selenium	6010	1	100	1.0	N.D.	
Silver	6010	5	500	0.50	N.D.	
Thallium	6010	7	700	5.0	N.D.	
Vanadium	6010	24	2400	0,50	19	
Zinc	6010	250	5000	0.50	35	

Analytes reported as N.D. were not present above the stated limit of detection.

DEL MAR ANALYTICAL, IRVINE (ELAP #1197)

Laboratory Director

2852 Alton Ave., Irvine, CA 92714

1014 E. Cooley Dr., Suite A, Colton, CA 92324

16525 Sherman Way, Suite C-11, Van Nuys, CA 91406

943 South 48th St., Suite 114, Tempe, AZ B5281

(714) 261-1022 FAX (714) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 [602) 968-8272 FAX (602) 968-1338

Geosystem Consultants, Inc. 18218 McDurmott East, Suite G

Irvine, CA 92714
Attention: Philip Miller

Client Project ID: 93-513

Sprayco/Bellaire Lighting-North Hollywood

Sample Descript: Soil, SB-5; 3"-9"

Lab Number: DB00332

Sampled: Feb Received: Feb

Feb 2, 1994 Feb 3, 1994

Analyzed: Feb 4-11, 1994 Reported: Feb 14, 1994

Analyte	EPA Method	STLC Max. Limit mg/L (ppm)	TTLC Max. Limit mg/Kg (ppm)	Detection Limit mg/Kg (ppm)	TTLC Sample Result mg/Kg (ppm)
Antimony	6010	15	500	5.0	N.D.
Arsenic	6010	5	500	1.0	N.D.
Barium	6010	100	10000	0.50	72
Beryllium	6010	0.75	75	0.10	N.D.
Cadmium	6010	1	100	0.10	0.55
Chromium (VI)	7196	5	500	0.25	N.D.
Chromium (Total)	6010	560	2500	0.50	4.8
Cobalt	6010	80	8000	0.50	2.3
Copper	6010	25	2500	0.50	15
Lead	6010	5	1000	1.0	45
Mercury	7471	0.2	20	0.075	0.11
Molybdenum	6010	350	3500	0.50	N.D.
Nickel	6010	20	2000	0.50	3.5
Selenium	6010	1	100	1.0	N.D.
Silver	6010	5	500	0.50	N.D.
Thallium	6010	7	700	5.0	N.D.
Vanadium	6010	24	2400	0.50	11
Zinc	6010	250	5000	0.50	40

Analytes reported as N.D. were not present above the stated limit of detection.

DEL MAR ANALYTICAL, IRVINE (ELAP #1197)

Gary Steube Laboratory Director

2852 Alton Ave., Irvine, CA 92714

1014 E. Cooley Dr., Suite A, Colton, CA 92324

16525 Sherman Way, Suite C-11, Van Nuys, CA 91406

943 South 48th St., Suite 114, Tempe, AZ 85281

(714) 261-1022 FAX (714) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (602) 968-8272 FAX (602) 968-1338

Geosystem Consultants, Inc.

18218 McDurmott East, Suite G Irvine, CA 92714

Attention: Philip Miller

Client Project ID: 93-513

Sample Descript: Soil, SB-6; 3"-9" Lab Number:

DB00333

Sprayco/Bellaire Lighting-North Hollywood

Sampled: Received: Analyzed: Feb 2, 1994 Feb 3, 1994

Feb 4-11, 1994 Reported: Feb 14, 1994

Analyte	EPA Method	STLC Max. Limit mg/L (ppm)	TTLC Max. Limit mg/Kg (ppm)	Detection Limit mg/Kg (ppm)	TTLC Sample Result mg/Kg (ppm)
Antimony	6010	15	500	5.0	N.D.
Arsenic	6010	5	500	1.0	N.D.
Barium	6010	100	10000	0.50	110
Beryllium	6010	0.75	75	0.10	N.D.
Cadmium	6010	1	100	0.10	13
Chromium (VI)	7196	5	500	0.25	N.D.
Chromium (Total)	6010	560	2500	0.50	81
Cobalt	6010	80	8000	0.50	3.0
Copper	6010	25	2500	0.50	40
Lead	6010	5	1000	1.0	180
Mercury	7471	0.2	20	0.075	0,20
Molybdenum	6010	350	3500	0.50	N.D.
Nickel	6010	20	2000	0.50	9.5
Selenium	6010	1	100	1.0	N.D.
Silver	6010	5	500	0.50	N.D.
Thallium	6010	7	700	5.0	N.D.
Vanadium	6010	24	2400	0.50	11
Zinc	6010	250	5000	0.50	740

Analytes reported as N.D. were not present above the stated limit of detection.

DEL MAR ANALYTICAL, IRVINE (ELAP #1197)

Gary\Steube Laboratory Director

2852 Alton Ave., Irvine, CA 92714 1014 E. Cooley Dr., Suite A, Colton, CA 92324 16525 Sherman Way, Suite C-11, Van Nuys, CA 91406

943 South 48th St., Suite 114, Tempe, AZ 85281

(714) 261-1022 FAX (714) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (602) 968-8272 FAX (602) 968-1338

Geosystem Consultants, Inc. 18218 McDurmott East, Suite G

Irvine, CA 92714

Attention: Philip Miller

Client Project ID: 93-513

Sprayco/Bellaire Lighting-North Hollywood

Sample Descript: Soil, SB-7; 3"-9" Lab Number: DB00334

Sampled: Feb 2, 1994 Received: Feb 3, 1994

Analyzed: Feb 4-11, 1994 Reported: Feb 14, 1994

Analyte	EPA Method	STLC Max. Limit mg/L (ppm)	TTLC Max. Limit mg/Kg (ppm)	Detection Limit mg/Kg (ppm)	TTLC Sample Result mg/Kg (ppm)
Antimony	6010	15	500	5.0	N.D.
Arsenic	6010	5	500	1.0	N.D.
Barium	6010	100	10000	0.50	170
Beryllium	6010	0.75	75	0.10	N.D.
Cadmium	6010	1	100	0.10	N.D.
Chromium (VI)	7196	5	500	0.25	N.D.
Chromium (Total)	6010	560	2500	0.50	15
Cobalt	6010	80	8000	0.50	8.7
Copper	6010	25	2500	0.50	24
Lead	6010	5	1000	1.0	17
Mercury	7471	0.2	20	0.075	0.16
Molybdenum	6010	350	3500	0.50	N.D.
Nickel	6010	20	2000	0.50	9.6
Selenium	6010	1	100	1.0	N.D.
Silver	6010	5	500	0.50	N.D.
Thallium	6010	7	700	5.0	N.D.
Vanadium	6010	24	2400	0.50	29
Zinc	6010	250	5000	0.50	49

Analytes reported as N.D. were not present above the stated limit of detection.

DEL MAR ANALYTICAL, IRVINE (ELAP #1197)

Laboratory Director

2852 Alton Ave., Irvine, CA 92714 1014 E. Cooley Dr., Suite A, Colton, CA 92324 16525 Sherman Way, Suite C-11, Van Nuys, CA 91406 943 South 48th St., Suite 114, Tempe, AZ 85281 (714) 261-1022 FAX (714) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (602) 968-8272 FAX (602) 968-1338

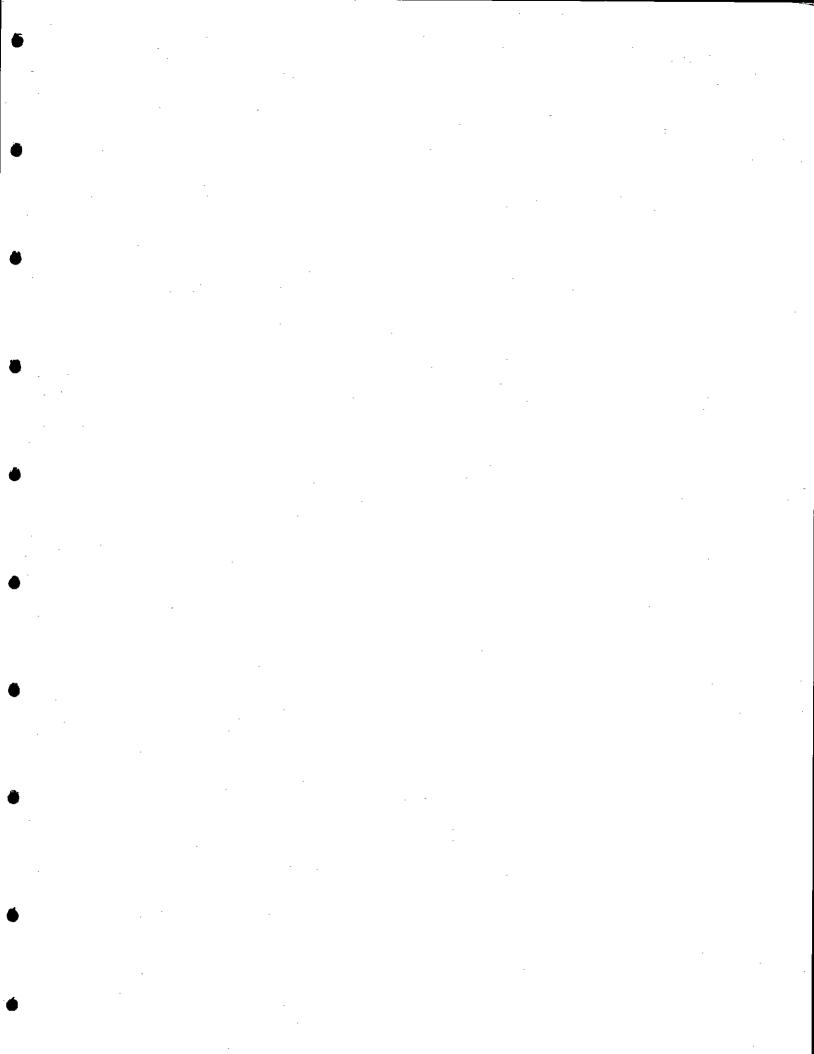
Geosystem Consultants, Inc. 18218 McDurmott East, Suite G Irvine, CA 92714 Attention: Philip Miller

Method Blank

Analyzed: Feb 4-11, 1994 Reported: Feb 14, 1994

Matrix: Soil

Analyte	EPA Method	STLC Max. Limit mg/L (ppm)	TTLC Max. Limit mg/Kg (ppm)	Detection Limit mg/Kg (ppm)	TTLC Sample Result mg/Kg (ppm)
Antimony	6010	15	500	5.0	N.D.
Arsenic	6010	5	500	1.0	N.D.
Barium	6010	100	10000	0.50	N.D.
Beryllium	6010	0.75	75	0.10	N.D.
Cadmium	6010	1	100	0.10	N.D.
Chromium (VI)	7196	5	500	0.25	N.D.
Chromium (Total)	6010	5 6 0	2500	0.50	N.D.
Cobalt	6010	80	8000	0.50	N.D.
Copper	6010	25	2500	0.50	N.D.
Lead	6010	5	1000	1.0	N.D.
Mercury	7471	0.2	20	0.075	N.D.
Molybdenum	6010	350	3500	0.50	N.D.
Nickel	6010	20	2000	0.50	N.D.
Selenium	6010	1	100	1.0	N.D.
Silver	6010	5	500	0.50	N.D.
Thallium	6010	7	700	5.0	N.D.
Vanadium	6010	24	2400	0.50	N.D.
Zinc	6010	250	5000	0.50	N.D.


Analytes reported as N.D. were not present above the stated limit of detection.

DEL MAR ANALYTICAL, IRVINE (ELAP #1197)

Gary Steube Laboratory Director GEOSYSTEM

CHAIN OF CUSTODY RECORD

Consultants, Inc. 18218 McDurmott East, Suite G, Irvine, California 92714						Analysis Remarks							ks	
(714) 553-8757 · FAX (714) 261-8550			,	X							1	10	. \\\'	esults when
Project Name Sprayco / Bellaire Lighting Project No. 93-513		<u> </u>		etals	Į								ilable.	isalts much
Location North Hollywood				7 12		. 1			ļ	1				
Project Manager Philip Milker		3		\$				Ì		*-	Title ZZ			
Sheet of Date February Z, 1993		m		Arozise						·	,,,,,			
Officer 2012	_	₹ <u>0</u>		₹				ļ	,					
Sample Identification Date Sampled Sampled Sampled Sampled		Composite	containers	Priority Pollutant Metals X		10(a/						Nos	mal TAI	
BG-153"-9" 2/2 Soil X	1		1											
BG-1318"24")			1		,	7								
BG-154.5-5'	7		abla		,	7								
SB-553'-9"	T		\mathcal{T}							i		•		
SB-5 318"-24"					,	/								
SB-5;4,5'-5'	Ţ				,									
58-653"-9"			{											
SB-6 518"-24"														
SB-6;4.5'-5'					١.									,
SB-7;3"-9"				/			ĺ						· · · · · · · · · · · · · · · · · · ·	
SB-7518"-24"		ļ			,	/						1.	utalt	Ponice
58-7: 1.51-5'			V		,									
Signature							С	ompa	any				Date	Time
Collected by	_					9-6	دور	~ ~	ste	<i>-</i>			2-2-14	2:15
Relinquished by 2	_			ļ			,	٠.					2-3-84	8:05
Received by the Bor					t	1			7				2-3-94	8:05
Relinquished by					11	(<u> </u>				2-3-94	11:30
Received by Wwite V					Del	M	QV	/ C	Vivo	Ūц	tico	ia (2394	11:30
Relinquished by										J				
Received by	_					_								

2852 Alton Ave., Irvine, CA 92714

1014 E. Cooley Dr., Suite A, Colton, CA 92324

16525 Sherman Way, Suite C-11, Van Nuys, CA 91406 943 South 48th St., Suite 114, Tempe, AZ 85281

(714) 261-1022 FAX (714) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843

(602) 968-8272 FAX (602) 968-1338

Geosystem Consultants, Inc. 18218 McDurmott East, Suite G Irvine, CA 92714

Attention: Philip Miller

Client Project ID: 93-513

Sprayco/Bellaire Lighting, N. Hollywood

Soil, SB-6; 18"-24"

Sample Descript: Lab Number: DC00016

Sampled: Fe Feb 2, 1994 Feb 3, 1994 Received:

Analyzed: Mar 7-14, 1994 Reported: Mar 14, 1994

E.P.A. PRIORITY POLLUTANTS: METALS

Analyte	Detection Limit mg/Kg (ppm)		Sample Result mg/Kg (ppm)
Antimony	5,0	***************************************	. N.D.
Arsenic	1.0	***************************************	N. D
Beryllium	0.10	***************************************	N.D.
Cadmium	0.10	***************************************	2.2
Chromium	0.50	***************************************	0.7
Copper	0.50	***************************************	40
Lead	1.0	1.1	9.0
Mercury	0.075		N.D.
Nickel	0.50	434433444444444444444444444444444444444	6.7
Selenium	1.0	***************************************	ND
Silver,	0.50	***************************************	N.D.
Thallium	5.0	***************************************	. N.D.
Zinc	0.50	***************************************	. 180

RECEIVED

MAR 2 2 1994

CONSULTANTS, INC.

Analytes reported as N.D. were not present above the stated limit of detection.

DEL MAR ANALYTICAL, IRVINE (ELAP #1197)

Gary Steube Laboratory Director 2852 Alton Ave., Irvine, CA 92714 1014 E. Cooley Dr., Suite A. Colton, CA 92324 16525 Sherman Way, Suite C-11, Van Nuys, CA 91406 943 South 48th St., Suite 114, Tempe, AZ 85281

(714) 261-1022 FAX (714) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (602) 968-8272 FAX (602) 968-1338

Geosystem Consultants, Inc. 18218 McDurmott East, Suite G Irvine, CA 92714 Attention: Philip Miller

Method Blank

Analyzed: Mar 7-14, 1994 Reported: Mar 14, 1994

Matrix: Soil

E.P.A. PRIORITY POLLUTANTS: METALS

Analyte	Detection Limit mg/Kg (ppm)		Sample Result mg/Kg (ppm)
Antimony	5.0	***************************************	. N.D.
Arsenic	1.0		. N.D.
Beryllium	0.10		. N.D.
Cadmium	0.10		. N.D.
Chromium	0.50		ND
Copper	0.50		. N.D.
Lead	1.0		N.D.
Mercury	0.075		, N.D.
Nickel	0.50	***************************************	N.D.
Selenium	1.0	***************************************	. N.D.
Silver	0.50		. N.D.
Thallium	5.0		. N.D.
Zinc	0.50		. N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

DEL MAR ANALYTICAL, IRVINE (ELAP #1197)

Gary Steube Laboratory Director

2852 Alton Ave., Irvine, CA 92714 1014 E. Cooley Dr., Suite A, Colton, CA 92324

16525 Sherman Way, Suite C-11, Van Nuys, CA 91406 943 South 48th St., Suite 114, Tempe, AZ 85281 (714) 261-1022 FAX (714) 261-1228 (909) 370-4667 FAX (909) 370-1046 (818) 779-1844 FAX (818) 779-1843 (602) 968-8272 FAX (602) 968-1338

QC DATA REPORT

METHOD

Metals

Instrument:

ICP

Date:

3/14/94

Matrix:

SOIL

Sample #:

Blank

Analyte	R1	SP	мѕ	MSD	PR1	PR2	RPD	MEAN PR
	ррь	ppb	ppb	ppb	%	%	%	%
Arsenic	0	1000	988	997	99%	100%	0.9%	99%
Beryllium	0	1000	1034	997	103%	100%	3.6%	102%
Cadmium	0	1000	1045	1029	105%	103%	1.5%	104%
Chromium	0	1000	1082	988	108%	99%	9.1%	104%
Copper	0	1000	1040	1017	104%	102%	2.2%	103%
Lead	0	1000	1056	1023	106%	102%	3.2%	104%
Nickel	0	1000	1046	975	105%	98%	7.0%	101%
Selenium	0	1000	830	863	83%	86%	3.9%	85%
Silver	0	1000	1098	1041	110%	104%	5.3%	107%
Thallium	0	1000	1069	997	107%	100%	7.0%	103%
Zinc	0	1000	1065	1015	107%	102%	4.8%	104%

R1..... Result of Sample Analysis

Sp...... Spike Concentration Added to Sample

MS..... Matrix Spike Result

MSD..... Matrix Spike Duplicate Result

PR1...... Percent Recovery of MS; ((MS-R1) / SP) X 100
PR2..... Percent Recovery of MSD; ((MSD-R1) / SP) X 100

RPD...... Relative Percent Difference; ((MS-MSD)/(MS+MSD)/2)) X 100

Del Mar Analytical

2852 Alton Ave., Irvine, CA 92714 [714] 261-1022 FAX [714] 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX [909] 370-1046

943 South 48th St., Suite 114, Tempe, AZ 85281 (602) 968-8272 FAX (602) 968-1338

16525 Sherman Way, Suite C-11, Van Nuys, CA 91406 (B18) 779-1844 FAX (818) 779-1843

QC DATA REPORT

EPA METHOD:

7471

matrix:

soil

DATE:

3/7/94

SAMPLE #

DC00016

Analyte	R1	Sp	MS	MSD	PR1	PR2	RPD	MEAN PR
	ppb	ppb	ppb	ppb	%	%	%	%
Mercury	0	8	9.1	9	114%	113%	1.1%	113%

Definition of Terms:

R1..... Result of Sample Analysis

Sp...... Spike Concentration Added to Sample

MS..... Matrix Spike Result

MSD..... Matrix Spike Duplicate Result

PR1..... Percent Recovery of MS; (MS-R1) / SP X 100

PR2..... Percent Recovery of MSD; ((MSD-R1) / SP X 100

RPD...... Relative Percent Difference; ((MS-MSD)/(MS+MSD)/2)) X 100

Dei Mar Analytical

GEOSYSTEM

CHAIN OF CUSTODY RECORD

18218 McDurmott East, Suite	Consultants, Inc. rmott East, Sulte G, Irvine, Caiifornia 92714						Analysis							Remarks				
Project Name Spray co / Bellaire Lighting Project No. 93-513 Location North Hollywood Project Manager Philip Miller Sheet of Date February 2, 1993						Privarily Pollutant Keetals X		Archier Archier					900	se FAX in lable. Title 22	esults whe	N		
Sample Identification	Date Sample		Sample	Description	Grab	Composite	Number of containers	Privriby P	7 57 1	J J blad					No	rmal TAT		
BG-153"-9"			Soil		X													\neg
BG-1318"-24"	I- I		\		}				~							· · · · · ·	7	
BG-1545-5'									~	7		-						
SB-55349"					П											·		
SB-5 518"-24"		_					\prod		7	7						<u> </u>		
SB-5;4,5'-5'				· · ·					-	7								_
58-653"-9"						_								 				\dashv
\SB-6 318"-24"							1		7,	7]]				<u> </u>		·		
58-6;45-51				·· ··			1		V	~								,
SB-713"-9"								/					 					
SB-7-5 18"-24"							1			-						uta Ct	Ponice	
58-7 4.51-51	V	-\			1	-	V									W(A) C	Jonia	_
′			Signatur	е							Co	npany				Date	Time	
Collected by	L-7	Sie	11	0.0							<u>۔ ر</u>	~ <u>~</u> r_7	 اسا			2-2-14	2:15	
Relinquished by	1)(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0.	- \						>	·.	<u> </u>			2-3-84	8:05	
Received by	-71	Tike	Goor	m the	· · · · · · · · · · · · · · · · · · ·				11			11				2-3-94	8:05	
Relinquished by	1	1/1/2	Sal					 	ic	-		[]				2-3-94		
Received by	111	witer	/		-				Del Now Cenalytical					\.d	2394	11:30		
Relinquished by	0 								.,, -,,	<u> </u>		<u> </u>	<u>un</u>	1000		0 0 1	11.00	
Received by			•		·-·												 	

SOIL VAPOR RESAMPLING REPORT

for

Former Sprayco Facility 12600 Saticoy Street South North Hollywood, California LARWQCB File No. 111.1004

for Submittal to

State of California Environmental Protection Agency California Regional Water Quality Control Board Los Angeles Region 101 Centre Plaza Drive Monterey Park, California 91754-2156 Mr. Joe Luera (213) 266-7500

Prepared for

Geosystem Consultants, Inc. 18218 McDurmott East, Suite G Irvine, California 92714 Mr. Philip Miller (714) 553-8757

₿v

AeroVironment Inc. 222 E. Huntington Drive Monrovia, CA 91016 Mr. Bill Wyman (818) 357-9983

August 1994

AeroVironment, Inc.

222 East Huntington Drive • Monrovia, California 91016 • U.S.A.
Telephone 818/357-9983 • Telex 467 121, AEROVIR-C1 • FAX 818/359-9628

SOIL VAPOR RESAMPLING REPORT

for

Former Sprayco Facility 12600 Saticoy Street South North Hollywood, California LARWQCB File No. 111.1004

for Submittal to

State of California Environmental Protection Agency California Regional Water Quality Control Board Los Angeles Region 101 Centre Plaza Drive Monterey Park, California 91754-2156 Mr. Joe Luera (213) 266-7500

Prepared for

Geosystem Consultants, Inc. 18218 McDurmott East, Suite G Irvine, California 92714 Mr. Philip Miller (714) 553-8757 Soil Vapor Resampling Report

Former Sprayco Facility 12600 Saticoy Street South North Hollywood, California LARWQCB File No. 111.1004

Prepared by:

Ms. Karen Kahler

California Registered Geologist #6061

Geologist

Reviewed by:

Mr. Bill Wyman

California Registered Geologist #4959

Senior Geologist

AeroVironment Inc. 222 East Huntington Drive Monrovia, California 91016 (818) 357-9983

August 1994

EXECUTIVE SUMMARY

AeroVironment Inc. (AeroVironment) resampled eight soil vapor sampling locations from a previous soil vapor survey at the former Sprayco facility at 12600 Saticoy Street South, North Hollywood, California ("the Property") on August 18, 1994. The purpose of this additional soil vapor survey was to address sample dilution concerns raised by the California Regional Water Quality Control Board, Los Angeles Region (LARWQCB) after AeroVironment's initial soil vapor survey in January 1994.

During the January 1994 survey of the Property, four volatile organic compounds (VOCs) were detected in the subsurface: tetrachloroethene (PCE), 1,1,1-trichloroethane (1,1,1-TCA), trichloroethene (TCE), and 1,1-dichloroethene (1,1-DCE). Maximum concentrations detected were 141.28 micrograms per liter (μ g/L) of PCE, 62.53 μ g/L of 1,1,1-TCA, 20.26 μ g/L of TCE, and 3.92 μ g/L of 1,1-DCE. PCE values were reported based on photoionization detector (PID) results. This occurred because AeroVironment recognized that the electrolytic conductivity detector (ELCD) values were very high and well out of linear range of the instruments. All other reported values were based on appropriate ELCD values. The highest concentrations of halogenated VOCs were detected in soil vapor samples collected from probes in the vicinity of the former solvent storage area.

On August 18, 1994, AeroVironment collected nine soil vapor samples from eight locations in the southern portion of the Property. Eight of the locations were sampled at a depth of five feet below ground surface (bgs), and an additional sample was collected from 15 feet bgs at location SG-V12. The samples were analyzed using methodology similar to United States Environmental Protection Agency (USEPA) Method 8010/8020.

All nine of the samples had detectable concentrations of PCE, 1,1,1-TCA, and TCE. The compound 1,1-DCE was detected in every sample except for the four samples from locations SG-V10, SG-V11, SG-V13, and SG-V14. This is probably due to the low initial concentrations and the effects of dilution raising the detection limits. The four compounds detected during this survey are the same ones identified as being present in the subsurface during the January 1994 survey. The maximum concentration of PCE detected during the resampling (887.66 μ g/L) was found at location SG-V11. The maximum concentrations of 1,1,1-TCA (84.62 μ g/L), TCE (19.31 μ g/L), and 1,1-DCE (4.30 μ g/L) were detected in the sample from location SG-V7. All values reported for the August 1994 survey are based on ELCD results. The calibration range for this survey was 5 to 50 μ g/L. All samples were diluted until analytical results fell within the calibration range. True values then were calculated by multiplying the result by the dilution factor. Sample dilution factors ranged from 4 to 20.

Like the January 1994 soil vapor survey, the results of the August 1994 soil vapor resampling suggest that soil underlying the Property has been impacted by chlorinated solvents. High VOC concentrations in soil vapor extend as deep as 15 feet bgs but generally decrease with depth. As in the previous soil vapor survey, VOCs appear to be concentrated near the former solvent storage area.

TABLE OF CONTENTS

		Page
1.	. INTRODUCTION	1-1
2.	PREVIOUS SOIL VAPOR ASSESSMENT	2-1
3.	. PROCEDURES	3-1
	3.1 Field Procedures	
	3.2 Mobile Laboratory Procedures	3-1
	3.3 Quality Assurance/Quality Control Procedures	3-1
	3.3.1 Sampling Protocols	3-1
	3.3.2 Instrument Calibration	3-2
	3.3.3 Quality Control (QC) Samples	3-2
	3.3.4 Quality Control Blanks	3-2 3-3
	3.4 Method Detection Limit (MDL) Determination	3-3 3-3
4.	DISCUSSION OF SOIL VAPOR RESAMPLING RESULTS	4-1
TA	ABLE 1	
	SOIL VAPOR ANALYTICAL RESULTS	
FIC	IGURES	
1	SOIL VAPOR SAMPLING LOCATIONS	
AP.	PPENDICES	•
A	SOIL VAPOR SAMPLE ANALYTICAL RESULTS AND RA	WDATA
В	SOIL VAPOR DAILY MID-POINT STANDARD AND L SAMPLE DATA	ABORATORY CONTROL
C	DAILY QC CHROMATOGRAMS	
D	THREE POINT CALIBRATION CURVE RESULTS WITH C	THPOMATOCD AME
Е	SOIL VAPOR SAMPLE DATA WORKSHEETS AND CHRO	MATOGRAMS

INTRODUCTION

AeroVironment resampled soil vapor survey locations at the Property on August 18, 1994. This work was conducted as a follow-up to the January 11 and 12, 1994 soil vapor survey that identified PCE, 1,1-DCE, 1,1,1-TCA, and TCE in the subsurface. Although concentrations of PCE and/or 1,1,1-TCA in 15 of the 22 samples collected and analyzed during the January 1994 survey were above the highest concentration in the calibration range (25 μ g/L), dilutions of only seven of the samples were analyzed at the time. Subsequently, the LARWQCB directed AeroVironment to resample and reanalyze additional soil vapor from select locations at the Property, using appropriate dilution protocols. The August 1994 assessment followed the requirements of the Well Investigation Plan (WIP) guidance document issued by the LARWQCB in March 1994.

Nine soil vapor samples were collected from eight sampling points in the southern portion of the Property, as shown in Figure 1. Eight of the nine soil vapor samples were collected from a depth of five feet bgs. At sampling location SG-V12, an additional sample was collected and analyzed from 15 feet bgs. All of the samples were analyzed for chemical compounds on the LARWQCB March 1994 WIP document analyte list (a subset of the USEPA 8010/8020 analytes list). This list is shorter than the original analyte list used in January 1994; however, none of the compounds that appeared only on the previous list are of concern at this site.

The soil vapor analytical results presented in this report (Table 1) are obtained by sampling and analyzing soil vapor concentrations in the vadose zone. Analyte detection at a particular location is representative of vapor-phase contamination at that location. The presence of detectable concentrations of those analytes in the vadose zone is dependent upon several factors, including the presence of vapor- and liquid-phase VOC concentrations adequate to facilitate volatilization into the unsaturated zone.

PREVIOUS SOIL VAPOR ASSESSMENT

On January 11 and 12, 1994, AeroVironment collected and analyzed soil vapor samples from 22 locations at the Property using analytical methodology similar to USEPA Method 8010/8020. The locations of the soil vapor probes are shown on Figure 1. Twenty-two soil vapor samples were collected from a depth of five feet bgs. Second-column confirmation analysis was run on the five-foot sample (Sample SG-V7.1) from location SG-V7. Dilutions of the five-foot samples from locations SG-V7, SG-V11, and SG-V12 (the samples with the three highest VOC concentrations detected) were analyzed. At locations SG-V7, SG-V9, SG-V11, and SG-V12, samples also were collected from a depth of 15 feet bgs. The four multi-depth sampling locations were in the southern portion of the Property, where a solvent storage area formerly was located.

All of the soil vapor samples collected and analyzed at the Property during the January 1994 assessment had detectable levels of halogenated VOCs. Compounds detected were PCE (up to 141.28 μ g/L), 1,1-DCE (up to 3.92 μ g/L), 1,1,1-TCA (up to 62.53 μ g/L), and TCE (up to 20.26 μ g/L). The highest concentrations of halogenated VOCs were detected in soil vapor samples collected from probes in the vicinity of the former solvent storage area. The highest concentration of PCE was found in Sample SG-V11.2, a dilution of the five-foot sample collected from location SG-V11, a sampling point west of the former solvent storage area.

Results for PCE were out of the linear calibration range of the ELCD (25 μ g/L being the highest concentration in the calibration range). Although the PID had the same calibration range as the ELCD, the PID responds much more linearly over a broad range; hence, extensions above its linear range were felt to better represent a closer approximation to actual values. PCE results therefore were calculated by using the responses from the PID.

After reviewing the results of this shallow soil vapor assessment, the LARWQCB directed AeroVironment to resample and reanalyze soil vapor from select locations at the Property, as the LARWQCB felt that appropriate dilution protocols had not been followed. The LARWQCB concluded that the results from the initial soil vapor survey that exceeded the highest concentration in the calibration range (25 μ g/L) should be considered a low estimate of the concentrations of VOCs detected at the site.

A complete description of the January 1994 soil vapor survey can be found in AeroVironment Document R93-300677R, dated March 4, 1994.

PROCEDURES

3.1 FIELD PROCEDURES

The soil vapor samples were collected through 1/8-inch outside diameter Nylaflow tubing that was advanced into the ground via a steel probe. The steel probe was driven to the target depth and then withdrawn two to four inches, leaving the drive tip behind. If a good seal between the soil and the probe could not be obtained, bentonite clay was placed around the probe and soil at the surface. The Nylaflow sample port was then attached to a 20 cubic centimeter (cc) syringe and the ambient air in the Nylaflow tube was extracted (purged). A purge volume of 40 cc was selected for samples from five feet bgs, based on results from AeroVironment's previous purge test. A 60 cc purge volume was used for the sample from 15 feet bgs.

Each soil vapor sample was collected and locked into a 20 cc syringe by way of a special three-way valve and delivered via a specially designed carrying case, within 20 minutes of sample collection, to the mobile laboratory.

3.2 MOBILE LABORATORY PROCEDURES

The soil vapor samples were analyzed on site in a mobile laboratory using a laboratory-grade Hewlett-Packard 5890 Series II gas chromatograph (GC) equipped with a Hall ELCD and a PID in series. The results were quantified using Hewlett-Packard's Chem-Station data system.

The soil vapor samples were injected directly into the chromatographic column through an injection port. The individual analytes present in the soil vapor were separated as they were drawn through the column by laboratory-grade carrier gas. As each analyte exited the column and passed through the detectors, an electronic signal, proportional to the quantity of the component, was sent to the Chem-Station data system, which produced a plot of the detector response versus time (chromatogram of the soil vapor sample).

Each of the samples was diluted by a factor of 4 to 20. The dilution factor for each sample is recorded on the soil vapor sample raw data sheets (Appendix A) and on Table 1.

3.3 QUALITY ASSURANCE/QUALITY CONTROL PROCEDURES

The quality of the measurement data is controlled by following AeroVironment's sampling and analysis, quality assurance/quality control (QA/QC) program. This program includes using strict sampling protocols to protect the integrity of the soil vapor samples, observing calibration procedures to ensure that valid data are obtained, and analyzing Quality Control (QC) samples to check sampling procedures and instrument precision.

3.3.1 Sampling Protocols

The sampling procedures detailed in the preceding sections were designed to maintain sample integrity and reproducibility of the data collected. To minimize the risk of cross-contamination, AeroVironment protocols specify the use of purging and sampling equipment made of materials such as stainless steel, Teflon, or Nylaflow which do not readily absorb organic chemicals. To further reduce the possibility of cross-contamination, areas where minimal or no contamination were suspected were sampled before those areas where high levels of contamination were expected. Purging no more than 40 to 60 cc of soil vapor before sample collection optimized the collection of a sample representative of the vapor in the soil. Purging, checking, and capping syringes before sample collection minimized the potential of contamination by ambient organic vapors. To minimize loss or degradation of the sample, minimal time was allowed to pass between sample collection and analysis. All nine samples were analyzed within 30 minutes of collection, as recorded on the soil vapor sample raw data sheets (Appendix A). Use of syringes with septa caps and transporting the syringes via a carrying case minimized the chance of sample loss during transport to the GC.

3.3.2 Instrument Calibration

Proper calibration of the GC contributed to measurement accuracy and precision and provided a means for detecting instrument malfunction. The GC calibration was verified using a National Institute of Science and Technology (NIST) -traceable standard at the beginning of each sampling day. This standard source is the same as that used for the three-point calibration curve. Instrument calibration was verified by analyzing a liquid standard sample called the mid-standard (daily one-point calibration sample). Results of this analysis were compared to average calibration factor (CF) results obtained from the three-point instrument calibration curve. All compounds detected at a particular site must pass the mid-standard calibration check to ensure quantification. The response factor for each of the compounds must be within 15 percent of the corresponding value from the three-point calibration curve, otherwise corrective action is implemented. The three-point instrument calibration curve is recalculated as necessary. Results of the most recent three-point calibration curve are provided in Appendix D.

3.3.3 Quality Control (QC) Samples

A QC check sample was analyzed at the end of the working day to ensure acceptable analysis. The QC check sample is a standard obtained from a different commercial source than the calibration standards and mid-standard. The QC check sample must contain the same chemicals as the mid-standard. Response for each compound must be within 20 percent of the corresponding true value as identified.

3.3.4 Quality Control Blanks

Any GC column is susceptible to remnant contamination, especially after highly contaminated samples are analyzed (more than $100~\mu g/L$). For this reason, equipment blanks (EQ Blanks) (also called probe blanks) or laboratory blanks (QC or system blanks) are analyzed as part of normal QC protocol. An equipment blank is analyzed at the start of each sampling day to document any residual contamination that remains in the sampling equipment that may interfere with sample analyses. Equipment blanks are collected in the same manner as an actual sample flowing through the entire sampling apparatus, but with uncontaminated or ultra zero-grade air from a commercial compressed-air cylinder. Since no residual contamination was found during equipment blank analysis, it was not necessary to analyze laboratory blanks. Laboratory blanks are run to document any residual contamination that remains in the GC that may interfere with the sample analyses.

3.4 METHOD DETECTION LIMIT (MDL) DETERMINATION

The analytical method detection limit (MDL) is defined as the minimum concentration at which a substance can be measured according to a particular analytical method with 99 percent confidence that the minimum concentration measured is a real concentration with a value above zero. The MDL for the soil vapor analyses of VOCs, using analytical methods similar to USEPA analytical Method 8010/8020, was established before this investigation as 1.0 µg/L. The MDL was established by analyzing NIST-traceable standards and calculating the concentration of the smallest response signal that could be resolved. This process was repeated seven times and the standard deviation was calculated. The MDL is established as three times the standard deviation of the seven sample analyses. The MDL reported in this investigation is 1.0 µg/L for all VOCs.

	•
	•
	•
	•
	_
	•
	<u> </u>
	•
	•
	•
	_
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•

DISCUSSION OF SOIL VAPOR RESAMPLING RESULTS

Nine soil vapor samples were collected from eight locations in the southern portion of the Property. The samples were analyzed using methodology similar to USEPA Method 8010/8020. The locations of all soil vapor probes are shown on Figure 1. A sample was collected from five feet bgs at each probe location and from 15 feet bgs at location SG-V12. Soil vapor sample numbers used in this report were kept similar to the original sample numbers. For example, SG-6R from this survey was obtained from sample location SG-V6 from the original January 1994 survey. Appendix A contains the analytical results and soil vapor sampling logs, and Appendix B contains the QA/QC data. Appendix C contains all sample QC worksheets and chromatograms, Appendix D contains three-point calibration curve results and chromatograms, and Appendix E contains data worksheets and chromatograms for soil vapor sample results.

All nine of the samples had concentrations of PCE, 1,1,1-TCA, and TCE exceeding the detection limit. The compound 1,1-DCE was detected in every sample except for the four samples from locations SG-V10, SG-V11, SG-V13, and SG-V14. This was probably due to raised MDLs caused by dilution. The four compounds detected during this survey are the same ones identified as being present in the subsurface during the January 1994 survey. The maximum concentration of PCE detected during the resampling (887.66 μ g/L) was found at location SG-V11. The maximum concentrations of 1,1,1-TCA (84.62 μ g/L), TCE (19.31 μ g/L), and 1,1-DCE (4.30 μ g/L) were detected in the sample from location SG-V7. All values reported for the August 1994 survey are based on ELCD results. The calibration range for this survey was 5 to 50 μ g/L. All samples were diluted until analytical results fell within the calibration range. True values then were calculated by multiplying the result by the dilution factor. Sample dilution factors ranged from 4 to 20. Table 1 summarizes the analytical results for the August 1994 soil vapor survey, and provides data from the January 1994 survey for comparison.

Like the January 1994 soil vapor survey, the results of the August 1994 soil vapor resampling suggest that soil underlying the Property has been impacted by chlorinated solvents. VOCs in soil vapor extend as deep as 15 feet bgs but generally decrease with depth. As in the shallow soil vapor survey, VOCs appear to be concentrated near the former solvent storage area.

As shown in Table 1, analytical results for 1,1-DCE, 1,1,1-TCA, and TCE at each sampling location are similar for January and August 1994. Concentrations of PCE at each location, however, appear to differ significantly. The principal cause of this difference is most likely the use of different detectors for the two surveys -- a PID was used to obtain the analytical results for PCE reported for January 1994, while an ELCD was used to obtain the analytical results for PCE in August 1994. Other factors possibly contributing to the difference in PCE results include the

seven-month time difference between sampling episodes; slight spatial differences between the sampling points for each sampling episode; migration of soil vapor; differences in soil moisture; and climatological effects. The August 1994 samples were not intended to serve as duplicates of the January 1994 samples, nor should they be considered as such. Rather, they are new, discrete samples obtained from approximately the same locations.

Table 1 SOIL VAPOR ANALYTICAL RESULTS

TABLE 1. Summary of soil vapor analytical results. 12600 Saticoy Street South, North Hollywood, California August 1994^a

Soil Vapor Probe Locations

Analyte (μg/L) ^b	SG-V6 5' 1/11/94 1317 1:1	SG-6R 5' 8/18/94 1316 5:1	SG-V7 5' 1/11/94 1339 1:1	SG-V7.1 5' 1/12/94 1121 10:1	SG-V7.3 5' 1/12/94 1815 5:1	SG-7R 5' 8/18/94 1453 10:1	SG-V8 5' 1/11/94 1358 1:1	SG-8R 5' 8/18/94 1102 4:1
1,1-Dichloroethene (1,1-DCE)	3.92	2.44	2.50	2.94	1.95	4.30	2.78	1.90
1,1,1-Trichloroethane	62.53	48.37	44.05	52.92	36.51	84.62	46.01	49.19
Trichloroethene (TCE)	8.54	13.88	4.60	4.94	2.52	19.31	8.91	9.50
Tetrachloroethene (PCE)	65.65 ^c	126.94	91.61 ^c	95.95 ^c	32.74 ^c	292.62	57.00 ^c	128.33

a Data from January 1994 (not in boldface type) are presented for comparison purposes

b $\mu g/L = \text{micrograms per liter. Detection limit is } 1 \mu g/L \text{ where no dilution was performed (1:1). For diluted samples, detection limit is } 1 \mu g/L \text{ times the dilution factor.}$

c PCE values for January 1994 survey based on photoionization detector results. (All other compounds and all August 1994 values based on electrolytic conductivity detector results.)

d BDL = below the laboratory detection limit

e Duplicate

TABLE 1. Summary of soil vapor analytical results.

12600 Saticoy Street South, North Hollywood, California
August 1994a

Soil Vapor Probe Locations

Analyte (μg/L) ^b	SG-V10 5' 1/12/94 1438 <u>1:1</u>	SG-10R 5' 8/18/94 1249 4:1	SG-V11 5' 1/12/94 1457 1:1	SG-V11.2 5' 1/12/94 1758 5:1	SG-11R 5' 8/18/94 1201 20:1	SG-V12 5' 1/12/94 1517 1:1	SG-V12.2 5' 1/12/94 1740 5:1	SG-12R 5' 8/18/94 1341 5:1	SG-12R 5' 8/18/94 1341 20:1
1,1-Dichloroethene (1,1-DC	E) 1.17	BDL^d	1.04	BDL	BDL	2.60	0.98	1.90	1.77
1,1,1-Trichloroethane	51.27	22.76	51.09	26.08	63.33	58.60	22.53	72.96	68.74
Trichloroethene (TCE)	11.24	8.54	3.63	1.68	5.11	6.67	2.61	13.64	12.49
Tetrachloroethene (PCE)	67.01 ^c	91.55	128.37 ^c	141.28 ^c	887.66	97.91 ^c	73.49 ^c	269.09	230.22

a Data from January 1994 (not in boldface type) are presented for comparison purposes

b $\mu g/L = micrograms$ per liter. Detection limit is $1 \mu g/L$ where no dilution was performed (1:1). For diluted samples, detection limit is $1 \mu g/L$ times the dilution factor.

PCE values for January 1994 survey based on photoionization detector results. (All other compounds and all August 1994 values based on electrolytic conductivity detector results.)

d BDL = below the laboratory detection limit

e Duplicate

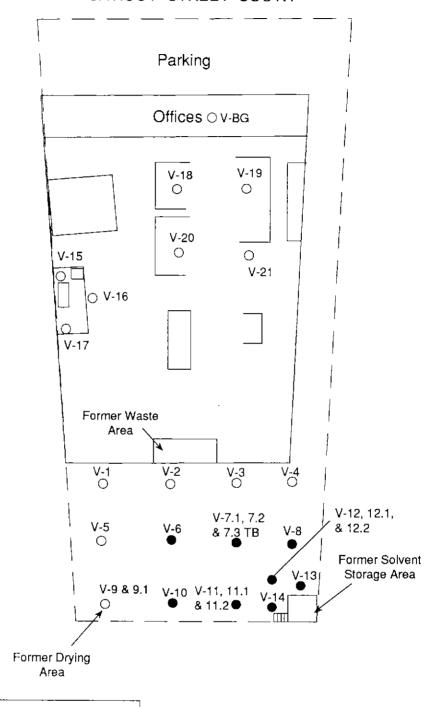
TABLE 1. Summary of soil vapor analytical results. 12600 Saticoy Street South, North Hollywood, California August 1994^a

Soil Vapor Probe Locations

Analyte (μg/L) ^b	SG-V12.1 15' 1/12/94 1455 1:1	SG-V12.1D ^e 15' 1/12/94 1455 40:1	SG-12.1R 15' 8/18/94 1519 4:1	SG-V13 5' 1/12/94 1537 1:1	SG-13R 5' 8/18/94 1132 5:1	SG-V14 5' 1/12/94 1555 1:1	SG-14R 5' 8/18/94 1427 10:1
1,1-Dichloroethene (1,1-DC	E) 3.32	BDL	2.09	1.35	BDL	1.27	BDL
1,1,1-Trichloroethane	52.59	20.61	50.28	43.93	38.57	46.92	38.51
Trichloroethene (TCE)	5.08	BDL	9.42	4.79	8.12	4.02	7.45
Tetrachloroethene (PCE)	52.98 ^c	6.02 ^c	183.15	78.19 ^c	159.30	85.62 ^c	357.45

a Data from January 1994 (not in **boldface** type) are presented for comparison purposes

b $\mu g/L = micrograms$ per liter. Detection limit is 1 $\mu g/L$ where no dilution was performed (1:1). For diluted samples, detection limit is 1 $\mu g/L$ times the dilution factor.


c PCE values for January 1994 survey based on photoionization detector results. (All other compounds and all August 1994 values based on electrolytic conductivity detector results.)

d BDL = below the laboratory detection limit

e Duplicate

Figure 1 SOIL VAPOR SAMPLING LOCATIONS

SATICOY STREET SOUTH

LEGEND

- O Soil Vapor Sampling Location, January 1994
- Soil Vapor Resampling Location, August 1994
- TB Tedlar Bag Sample for Second Column Confirmation, January 1994

Scale (feet)

0 40 80

AeroVironment Inc.

222 East Huntington Drive Monrovia, California 91016

SOIL VAPOR SAMPLE LOCATIONS

Former Sprayco Facility 12600 Saticoy St. So. North Hollywood, CA

Project No. 300677

FIGURE

1

Appendix A

SOIL VAPOR SAMPLE ANALYTICAL RESULTS AND RAW DATA

Soil Vapor Sample Collection Log

Project name: Geosystems

Analysis date: 08/18/94

Project#: 300677 GC ID: GC2 PID/ELCD

Sample	Syringe	Sample	Probe	Purge	Purge	Purge	Sampled	
Number	Number	Time	Depth(ft)	Flow(cc/m)	Vacuum	Vol(cc)	Ву	Comments
Eq. Blank 1	15	09:52	NA	NA	NA	NA	NC NC	Oominents
SG-08R	2	11:02	5	NA	NA	40	NC	
SG-13R	3	11:31	5	NA	NA	40	NC	
SG-11R	4	12:01	5	NA	NA	40	NC	
SG-10R	5	12:49	5	NA	NA	40	NC	
SG-6R	6	13:16	5	NA	NA	40	NC	
SG-12R	7	13:41	5	NA	NA	40	NC NC	
SG-12R	7	13:41	5	NA.	NA NA	40		
SG-14R	8	14:27	5	NA NA	NA		NC NC	
SG-7R	9	14:53	5	NA	NA NA	40	NC	
SG-12.1R	1	15:19	15	NA	NA NA	40 60	NC NC	

AeroVironment Inc.

Data Worksheet GC/PID/ELCD

Sample ID: SG-12R Control #: 818947

Project name: Geosystems Sample date: 08/18/94 Project#: 300677 File name: NV-1056 Location: No. Hollywood Analysis: 8010/8020 Analyst: Jay Berger Sampled by: NC

Lab ID: Truck 1 GC ID: GC2 PID/ELCD Sample type: N1

Calib std: no

Sample time: 13:41 Received time: 13:44 18Th. Injection time: 13:47 18Th. Probe depth: 5 Feet Purge volume: 40 CC Sample flow: NA CC/min Vacuum: NA "H2O Syringe: 7 Plastic 1cc Dilution factor: 5

Calibration date: 07/22/94 Injection volum 0.1 mL

	Standard		Sample		.]
Compound	RT	Avg. CF	RT	Area	ug/L
Dichlorodifluoromethane	0.59	138477	•	0	0.00
Vinyl chloride	0.71	271379		0	0.00
Chloroethane	0.87	195402		0	0.00
Trichlorofluoromethane	0.97	290771		0	0.00
1,1,2-Trichloro-trifluoroethane	1.23	334184		0	0.00
1,1-Dichloroethene (1,1-DCE)	1.22	443468	1.27	84112	1.90
Dichloromethane (Methylene chloride)	1.50	533175		0	0.00
trans-1,2-Dichloroethene(t-1,2-DCE)	1.67	486172		0	0.00
1,1-Dichloroethane (1,1-DCA)	1.96	499909	L	0	0.00
cis-1,2-Dichloroethene (c-1,2-DCE)	2.46	501846		0	0.00
Chloroform	2.81	644803		0	0.00
1,1,1-Trichloroethane (1,1,1-TCA)	2.97	559745	3.01	4083639	72.96
Carbon tetrachloride	3.16	660954		0	0.00
Benzene	3.41	13196		0	0.00
1,2-Dichloroethane (1,2-DCA)	3.48	536556		0	0.00
Trichloroethene (TCE)	4.52	581271	4.57	792874	13.64
Toluene	7.02	12282		0	0.00
1,1,2-Trichloroethane (1,1,2-TCA)	7.82	538285		0	0.00
Tetrachloroethene (PCE)	7.94	640559	7.98	17237100	269.09
1,1,1,2-Tetrachloroethane	9.49	607279		0	0.00
Ethylbenzene	9.53	10974		0	0.00
m&p-Xylene	9.73	12790		0	0.00
o-Xylene	10.30	10909		0	0.00
1,1,2,2-Tetrachloroethane	11.41	602475		0	0.00

Total peaks of PID: 2 Total peaks of ELCD: 4 Unidentified peaks: 0

^{1-&}quot;Standard RT" is the retention time for the standard.

^{2-&}quot;Standard AVE. CF" is the average calibration factor for this instrument.

^{3-&}quot;Sample area" is the area under the peak.

^{4-&}quot;Sample ug/L" is the concentration of the analyte in the sample

AeroVironment Inc. Analysis Results

GC/PID/ELCD

Sample ID: SG-12R Control #: 818947

Sample date: 08/18/94

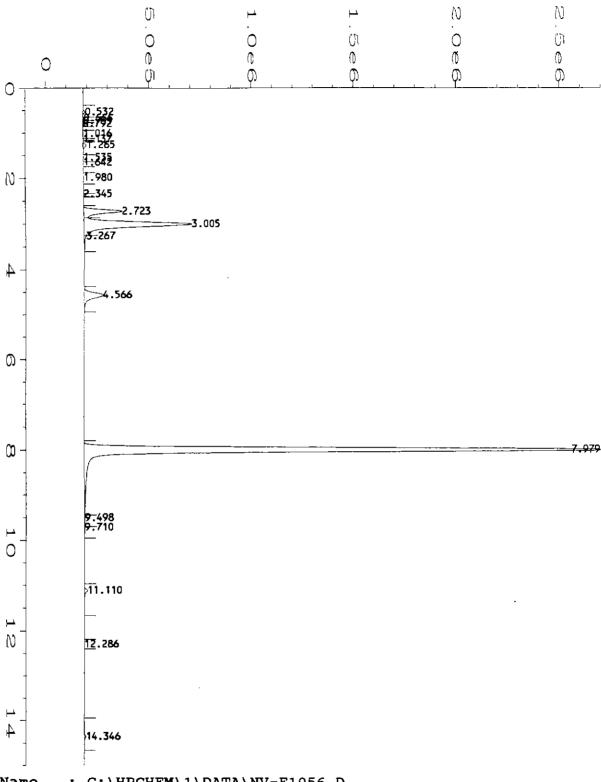
Project#: 300677 Location: No. Hollywood Analysis: 8010/8020

Sampled by: NC Sample time: 13:41 Probe depth: 5

Feet

Sample type: N1

Dilution factor: 5 Injection volume: 0.10


mL

Company	MDL	Sample	
Compound	ug/L	ug/L	
Dichlorodifluoromethane	0.42	<1.0	
Vinyl chloride	0.16	<1.0	
Chloroethane	0.10	<1.0	
Trichlorofluoromethane	0.21	<1.0	
1,1,2-Trichloro-trifluoroethane	1.00	<1.0	
1,1-Dichloroethene (1,1-DCE)	0.18	1.90	
Dichloromethane (Methylene chloride)	0.15	<1.0	
trans-1,2-Dichloroethene(t-1,2-DCE)	0.18	<1.0	
1,1-Dichloroethane (1,1-DCA)	0.17	<1.0	
cis-1,2-Dichloroethene (c-1,2-DCE)	0.16	<1.0	
Chloroform	0.22	<1.0	
1,1,1-Trichloroethane (1,1,1-TCA)	0.19	72.96	
Carbon tetrachloride	0.53	<1.0	
Benzene	0.87	<1.0	
1,2-Dichloroethane (1,2-DCA)	0.26	<1.0	
Trichloroethene (TCE)	0.16	13.64	
Toluene	0.18	<1.0	
1,1,2-Trichloroethane (1,1,2-TCA)	0.17	<1.0	
Tetrachioroethene (PCE)	0.21	269.09	
1,1,1,2-Tetrachloroethane	0.31	<1.0	
Ethylbenzene	0.23	<1.0	
m&p-Xylene	0.27	<1.0	
o-Xylene	0.41	<1.0	
1,1,2,2-Tetrachloroethane	0.22	<1.0	
	0.22	<1.0	

Notes:

^{1-&}quot;MDL ug/L" is the method limit.

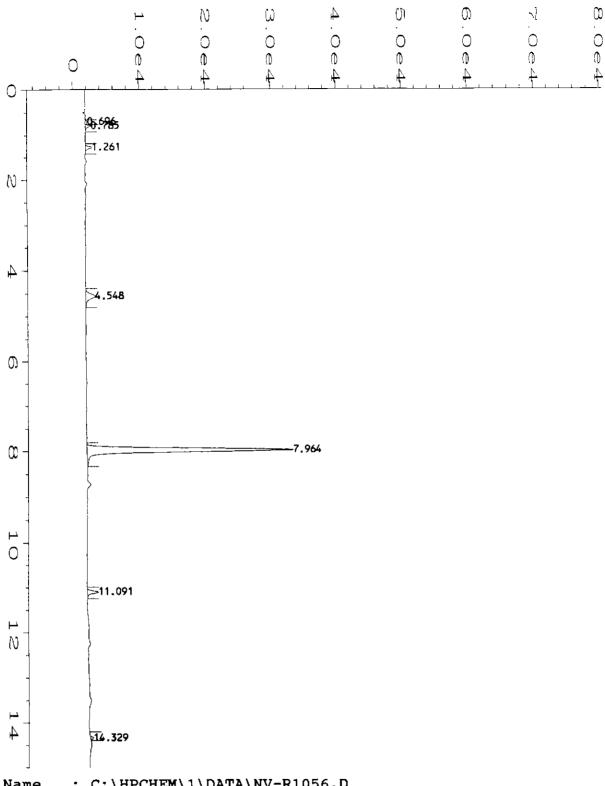
^{2-&}quot;Sample ug/L" is the concentration of the analyte in the sample

Data File Name : C:\HPCHEM\1\DATA\NV-F1056.D Operator : JAY BERGER Page Number : 1 Instrument : INSTRUMEN Vial Number Sample Name : SG-12R Injection Number: Run Time Bar Code: Sequence Line Acquired on : 18 Aug 94 01:47 PM Instrument Method: SG-1.MTH

Acquired on : 18 Aug 94 01:47 PM Instrument Method: SG-1.MTH Report Created on: 18 Aug 94 02:03 PM Analysis Method : SG-1.MTH

Sample Info : 5:1 Dilution

Data File Name : C:\HPCHEM\1\DATA\NV-F1056.D


Operator : JAY BERGER
Instrument : INSTRUMEN
Sample Name : SG-12R Page Number Vial Number Injection Number:

Run Time Bar Code:

Sequence Line : Acquired on : 18 Aug 94 01:47 PM Report Created on: 18 Aug 94 02:03 PM Instrument Method: SG-1.MTH Analysis Method : SG-1.MTH

Sig. 1 in C:\HPCHEM\1\DATA\NV-F1056.D

Pk#	Ret Time	Area	Height	Type	Width	Area %
1	0.532	37738	10256	BV	0.052	0.1594
2	0.666	10936	5163	PV	0.032	0.1394
3	0.731	3745	3053	VV	0.018	0.0158
4	0.792	4578	1821	vv	0.040	0.0158
5	1.016	4174	706	PV	0.083	0.0193
6	1.137	1240	517	VV	0.032	0.0052
. 7	1.265	84112	16065	νν	0.032	0.3553
8	1.535	9017	1432	VV	0.078	0.0381
9	1.642	1533	633	VV	0.040	0.0065
10	1.980	11206	1845	PV	0.083	0.0473
11	2.345	2559	1644	PV	0.029	0.0108
12	2.723	1131326	185673	PV	0.092	4.7788
13	3.005	4083639	523245	νν	0.111	17.2497
14	3.267	72490	11487	VV	0.105	0.3062
15	4.566	792874	91987	PV	0.128	3.3492
16	7.979	1.72371E+007	2726364	BV	0.097	72.8115
17	9.498	30999	3159	VV	0.126	0.1309
18	9.710	7491	1180	VB	0.080	0.0316
19	11.110	95970	16662	BB	0.085	0.4054
20	12.286	6491	1127	PV	0.086	0.0274
21	14.346	44385	8165	BV	0.080	0.1875

Data File Name : C:\HPCHEM\1\DATA\NV-R1056.D

Operator : JAY BERGER Page Number : 1

Instrument : INSTRUMEN Vial Number : Sample Name : SG-12R Injection Number : Sequence Line :

Acquired on : 18 Aug 94 01:47 PM Instrument Method: SG-1.MTH Report Created on: 18 Aug 94 02:03 PM Analysis Method : SG-1.MTH

Sample Info : 5:1 Dilution

Data File Name : C:\HPCHEM\1\DATA\NV-R1056.D

Operator : JAY BERGER Page Number : Instrument : INSTRUMEN Vial Number : Sample Name : SG-12R Injection Number : Run Time Bar Code: Sequence Line :

Acquired on : 18 Aug 94 01:47 PM Instrument Method: SG-1.MTH Report Created on: 18 Aug 94 02:03 PM Analysis Method : SG-1.MTH

Sig. 2 in C:\HPCHEM\1\DATA\NV-R1056.D

Pk#	Ret Time	Area	Height	Type	Width	Area %
1	0.696	1264	314	`VV	0.055	0.6110
2	0.785	2629	815	VB	0.046	1.2707
3	1.261	3955	980	BB	0.062	1.9114
4	4.548	11350	1430	BB	0.113	5.4853
5	7.964	178992	31443	BB	0.088	86.5052
6	11.091	7257	1683	BB	0.067	3.5072
7	14.329	1467	469	BV	0.053	0.7092

Total area = 206915

Soil Vapor Analytical Results

AeroVironment Inc.

	SITE NAME:	<u>Geosystems</u>		LAB NAME:	<u>AeroVironme</u>	nt Inc.	DATE: <u>08/18/94</u>		
Sample ID: Probe depth:		SG-08R 5	SG-13R 5	SG-11R 5	SG-10R 5	SG-6R 5	SG-12R 5	SG-12R 5	
Compound		ŭ	J	3	J	3	5	5	
Dichlorodifluoromethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Vinyl chloride	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Chloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Trichlorofluoromethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
1,1,2-Trichloro-trifluoroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
1,1-Dichloroethene (1,1-DCE)	<1.0	1.90	<1.0	<1.0	<1.0	2.44	1.90	1.77	
Dichloromethane (Methylene chloride)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
trans-1,2-Dichloroethene(t-1,2-DCE)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
1,1-Dichloroethane (1,1-DCA)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
cis-1,2-Dichloroethene (c-1,2-DCE)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Chloroform	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
1,1,1-Trichloroethane (1,1,1-TCA)	<1.0	49.19	38.57	63.33	22.76	48.37	72.96	68.74	
Carbon tetrachloride	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Benzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
1,2-Dichloroethane (1,2-DCA)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Trichloroethene (TCE)	<1.0	9.50	8.12	5.11	8.54	13.88	13.64	12.49	
Toluene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
1,1,2-Trichloroethane (1,1,2-TCA)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Tetrachloroethene (PCE)	<1.0	128.33	159.30	887.66	91.55	126.94	269.09	230.22	
1,1,1,2-Tetrachloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Ethylbenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
m&p-Xylene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
o-Xylene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
1,1,2,2-Tetrachioroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	

Project #: 300677

Soil Vapor Analytical Results

AeroVironment Inc.

	0175 11115	_				Project #: 300677
	SITE NAME:	Geosystems		_ LAB NAME:	AeroVironment Inc.	DATE: 08/18/94
Sample ID Probe depth		SG-7R 5	SG-12.1R 15			
Compound		-				
Dichlorodifluoromethane	<1.0	<1.0	<1.0	_		
Vinyl chloride	<1.0	<1.0	<1.0			
Chloroethane	<1.0	<1.0	<1.0			
Trichlorofluoromethane	<1.0	<1.0	<1.0			
1,1,2-Trichloro-trifluoroethane	<1.0	<1.0	<1.0			
1,1-Dichloroethene (1,1-DCE)	<1.0	4.30	2.09			
Dichloromethane (Methylene chloride)	<1.0	<1.0	<1.0			
trans-1,2-Dichloroethene(t-1,2-DCE)	<1.0	<1.0	<1.0			
1,1-Dichloroethane (1,1-DCA)	<1.0	<1.0	<1.0			
cis-1,2-Dichloroethene (c-1,2-DCE)	<1.0	<1.0	<1.0			
Chloroform	<1.0	<1.0	<1.0			
1,1,1-Trichloroethane (1,1,1-TCA)	38.51	84.62	50.28			
Carbon tetrachloride	<1.0	<1.0	<1.0			
Benzene	<1.0	<1.0	<1.0			
1,2-Dichloroethane (1,2-DCA)	<1.0	<1.0	<1.0			
Trichloroethene (TCE)	7.45	19.31	9.42			
Toluene	<1.0	<1.0	<1.0			
1,1,2-Trichloroethane (1,1,2-TCA)	<1.0	<1.0	<1.0			
Tetrachloroethene (PCE)	357.45	292.62	183.15			
1,1,1,2-Tetrachioroethane	<1.0	<1.0	<1.0			
Ethylbenzene	<1.0	<1.0	<1.0			
m&p-Xylene	<1.0	<1.0	<1.0			
o-Xylene	<1.0	<1.0	<1.0			
1,1,2,2-Tetrachloroethane	<1.0	<1.0	<1.0			

Soil Vapor Sample Raw Data

	SITE NAME: No. Hollywood			LAB NAME: AeroVironment				DATE : 08/18/94			
	ANALYST: Ja	ay Berger		c	COLLECTOR: N	1C	<u> </u>	INSTRUMENT ID: GC2 PID/ELCD			
NORMAL IN	JECTION VOLUME: 0.	~	mL			···					
	Sample ID: Sampling Depth: Purge Volume: Vacuum: Sampling Time: Injection Time; njection Volume(mL): Dilution Factor	Eq. E N N OS 10	Blank 1 NA NA NA 9:52 9:03 .50	1 1	G-08R 5 40 NA 1:02 1:10 0.13	1 1 (G-13R 5 40 NA 1:31 1:42 0:10 5:00	1 1 (6-11R 5 40 NA 2:01 2:31 0.03	1 12 12 0	i-10R 5 40 NA 2:49 2:57 .13
COMPOUND	DETECTOR	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA
Dichlorodifluoromethane Vinyl chloride Chloroethane Trichlorofluoromethane 1,1,2-Trichloro-trifluoroethane 1,1-Dichloroethene (1,1-DCE) Dichloromethane (Methylene chloride trans-1,2-Dichloroethene (t-1,2-DCE) 1,1-Dichloroethane (1,1-DCA) cis-1,2-Dichloroethene (c-1,2-DCE) Chloroform 1,1,1-Trichloroethane (1,1,1-TCA) Carbon tetrachloride Benzene 1,2-Dichloroethane (1,2-DCA) Trichloroethene (TCE) Toluene	ELCD ELCD ELCD ELCD ELCD ELCD		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.27 3.00 4.58	0 0 0 0 105253 0 0 0 0 3442079 0 0 690519	1.27 3.01 4.57	0 0 0 0 0 33799 0 0 0 0 2158867 0 0 471745	1.32 3.05 4.61	0 0 0 0 0 5087 0 0 0 0 886169 0 0 74280	1.27 3.01 4.56	0 0 0 0 0 25192 0 0 0 0 1592299 0 0 0
1,1,2-Trichloroethane (1,1,2-TCA) Tetrachloroethene (PCE) 1,1,1,2-Tetrachloroethane Ethylbenzene m&p-Xylene o-Xylene 1,1,2,2-Tetrachloroethane	ELCD ELCD PID PID PID ELCD		0 0 0 0 0 0	7.98	0 10275700 0 0 0 0 0	7.98	0 10203800 0 0 0 0	7.99	0 14215000 0 0 0 0 0	7.98	0 7330231 0 0 0 0 0
Total Peaks Total Peaks (E Unidentified p	LCD)		0 0 0		2 4 0		2 4 0		2 4 0		2 4 0

Soil Vapor Sample Raw Data

SITE NAME: No. Hallywood			LAB NAME: AeroVironment				DATE : 08/18/94				
	ANALYST: J	ay Berger	•	C	COLLECTOR: NC			INSTRUMENT ID: GC2 PID/ELCD			
NORMAL INJ	ECTION VOLUME: 0	.50	mL		_	-		•			
	Sample ID:	S	G-6R	so	3-12R	so	G-12R	S	G-14R	s	G-7R
	Sampling Depth:		5		5		5		5	J	5
	Purge Volume:		40		40		40		40		40
	Vacuum:		NA		NA		NA		NA		NA
	Sampling Time:	1	3:16	1	3:41		3:41	1	4:27		4:53
	Injection Time:	1	3:24	1	3:47	1	4:11		4:36		5:00
lnj	jection Volume(mL):	(0.10	(0.10		0.03		0.05		0.05
	Dilution Factor	5.00		5.00		20.00		10.00		10.00	
COMPOUND	DETECTOR	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA
Dichlorodifluoromethane	ELCD		0		0		0		0		0
Vinyl chloride	ELCD		0		0		0		Ö		0
Chloroethane	ELCD		0		0		0		Ö		0
Trichlorofluoromethane	ELCD		0		0		0		Ö		o o
1,1,2-Trichloro-trifluoroethane	ELCD		0		0		0		0		0
1,1-Dichloroethene (1,1-DCE)	ELCD	1.27	108259	1.27	84112	1.28	19645	1.27	15335	1.27	95272
Dichloromethane (Methylene chloride)	ELCD		0		0		0		0	1.27	0
trans-1,2-Dichloroethene(t-1,2-DCE)	ELCD		0		0		0		0		0
1,1-Dichloroethane (1,1-DCA)	ELCD		0		0		0		0		0
cis-1,2-Dichloroethene (c-1,2-DCE)	ELCD		0		0		0		0		0
Chloroform	ELCD		0		. 0		0		0		0
1,1,1-Trichloroethane (1,1,1-TCA)	ELCD	3.01	2707448	3.01	4083639	3.02	961916	3.02	1077657	3.01	2368225
Carbon tetrachloride	ELCD		0		0		0		0		0
Benzene	PID		0		0		0		0		0
1,2-Dichloroethane (1,2-DCA)	ELCD		0		0		0		0		0
Trichloroethene (TCE).	ELCD	4.57	806941	4.57	792874	4.58	181552	4.58	216436	4.58	561277
Toluene	PID		0		. 0		0		0		0
1,1,2-Trichloroethane (1,1,2-TCA)	ELCD		0		0		0		0		0
Tetrachloroethene (PCE)	ELCD	7.98	8131533	7.98	17237100	7. 9 9	3686711	7.99	11448400	7.99	9371969
1,1,1,2-Tetrachloroethane	ELCD		0		0		0		0		0
Ethylbenzene	PID		0		0		0		0		0
m&p-Xylene	PID		0		0		0		0		0
o-Xylene	PID		0		0		0		0		0
1,1,2,2-Tetrachloroethane	ELCD		0		0		0		0		0
Total Peaks (I	PID)		2		2		2		2		2
Total Peaks (EL			4		4		4		4		4
Unidentified pe	aks		0		0		0		0		0

Soil Vapor Sample Raw Data

	SITE NAME: No. Hollywood		LAB NAME: AeroVironment	DATE : 08/18/94					
	ANALYST: J	ay Berger		COLLECTOR: NC	INSTRUMENT ID: GC2 PID/ELCD				
NORMAL IN	JECTION VOLUME: $\frac{0}{0}$.50	mL		-				
	Sample ID:	SG-	-12.1R						
	Sampling Depth:		15						
	Purge Volume:		60						
	Vacuum:		NA						
	Sampling Time:		5:19						
	Injection Time:	1.	5:26						
İn	jection Volume(mL):	(0.13						
	Dilution Factor	2	1.00						
COMPOUND	DETECTOR	RT	AREA						
Dichlorodifluoromethane	ELCD		0						
Vinyl chloride	ELCD		0						
Chloroethane	ELCD		0						
Trichlorofluoromethane	ELCD		0						
1,1,2-Trichloro-trifluoroethane	ELCD		0						
1,1-Dichloroethene (1,1-DCE)	ELCD	1.27	115637						
Dichloromethane (Methylene chloride) ELCD		0						
trans-1,2-Dichloroethene(t-1,2-DCE)	ELCD		0						
1,1-Dichloroethane (1,1-DCA)	ELCD		0						
cis-1,2-Dichloroethene (c-1,2-DCE)	ELCD		0						
Chloroform	ELCD		0						
1,1,1-Trichloroethane (1,1,1-TCA)	ELCD	3.02	3517953						
Carbon tetrachloride	ELCD		0						
Benzene	PID		0						
1,2-Dichloroethane (1,2-DCA)	ELCD		0						
Trichloroethene (TCE)	ELCD	4.58	684109						
Toluene	PID		0						
1,1,2-Trichloroethane (1,1,2-TCA)	ELCD		0						
Tetrachloroethene (PCE)	ELCD	7.99	14664800						
1,1,1,2-Tetrachloroethane	ELCD		0						
Ethylbenzene	PID		0						
m&p-Xylene	PID	`	0						
o-Xylene	PID		0						
1,1,2,2-Tetrachloroethane	ELCD		0						
Total Peaks	(PID)		2						
Total Peaks (El	LCD)		4						
Unidentified p	eaks		0						

		_
		•
		•
		_
		•
		•
		•
		•
		•
		_
		•
		ĺ
		•
		•
		•
		•

Appendix B

SOIL VAPOR DAILY MID-POINT STANDARD AND LABORATORY CONTROL SAMPLE DATA

SOIL GAS DAILY MID-POINT CALIBRATION STANDARD

SITE NAME: Geosystems

ANALYST: Jay Berger

NORMAL INJECTION VOLUME: 0.50 uL

LAB NAME: AeroVironment Inc. STD LOT ID NO. CUS-881/H-0911

DATE: 08/18/94

INSTRUMENT ID: GC2 PID/ELCD

			MASS				
COMPOUND	DETEC.	RT	ng	AREA	CF	%DIFF	ACC RGE
Dichlorodifluoromethane	ELCD						<25.00
Vinyl chloride	ELCD						<25.00
Chloroethane	ELCD						·<25.00
Trichlorofluoromethane	ELCD						<25.00
1,1,2-Trichloro-trifluoroethane	ELCD						<25.00
1,1-Dichloroethene (1,1-DCE)	ELCD	1.24	10	4286960	428696	-3.33	<15.00
Dichloromethane (Methylene chloride)	ELCD						<15.00
trans-1,2-Dichloroethene(t-1,2-DCE)	ELCD	1.68	10	4937207	493721	1.55	<15.00
1,1-Dichloroethane (1,1-DCA)	ELCD	1.98	10	5272051	527205	5.46	<15.00
cis-1,2-Dichloroethene (c-1,2-DCE)	ELCD	2.48	10	5179579	517958	3.21	<15.00
Chloroform	ELCD					V.21	<15.00
1,1,1-Trichloroethane (1,1,1-TCA)	ELCD	2.99	10	5821740	582174	4.01	<15.00
Carbon tetrachloride	ELCD						<15.00
Benzene	PID	3.44	10	133228	13323	0.96	<15.00
1,2-Dichloroethane (1,2-DCA)	ELCD	3.51	10	5614938	561494	4.65	<15.00
Trichloroethene (TCE)	ELCD	4.55	10	5896768	589677	1.45	<15.00
Toluene	PID	7.05	10	124493	12449	1.36	<15.00
1,1,2-Trichloroethane (1,1,2-TCA)	ELCD	7.84	10	5478431	547843	1.78	<15.00
Tetrachloroethene (PCE)	ELCD	7.97	10	6269731	626973	-2.12	<15.00
1,1,1,2-Tetrachloroethane	ELCD				02007.5	2.12	<15.00
Ethylbenzene	PID						<15.00
m&p-Xylene	PID	9.75	10	128882	12888	0.77	<15.00
o-Xylene	PID	10.32	10	109480	10948	0.35	<15.00 <15.00
1,1,2,2-Tetrachloroethane	ELCD				, 30-10	0.00	<15.00

SOIL GAS LABORATORY CONTROL STANDARD

SITE NAME: Geosystems
ANALYST: Jay Berger

LAB NAME: AeroVironment Inc.

DATE: 08/18/94

NORMAL INJECTION VOLUME: 0.50

IE: 0.50 uL

STD LOT ID NO. CUS-881/H0377 INSTRUMENT ID: GC2 PID/ELCD

			MASS				
COMPOUND	DETEC.	RT	ng	AREA	CF	%DIFF	ACC RGE
Dichlorodifluoromethane	ELCD				 · <u>-</u>	···	<20
Vinyl chloride	ELCD						<20
Chloroethane	ELCD						<20
Trichlorofluoromethane	ELCD						<20
1,1,2-Trichloro-trifluoroethane	ELCD						<20
1,1-Dichloroethene (1,1-DCE)	ELCD	1.24	10	3975381	397538	-10.36	<20
Dichloromethane (Methylene chloride)	ELCD						<20
trans-1,2-Dichloroethene(t-1,2-DCE)	ELCD	1.69	10	4351241	435124	-10.50	<20
1,1-Dichloroethane (1,1-DCA)	ELCD	1.99	10	4712140	471214	-5.74	<20
cis-1,2-Dichloroethene (c-1,2-DCE)	ELCD	2.49	10	4666396	466640	-7.02	<20
Chloroform	ELCD						<20
1,1,1-Trichloroethane (1,1,1-TCA)	ELCD	3.01	10	5282631	528263	-5.62	<20
Carbon tetrachloride	ELCD						<20
Benzene	PID	3.46	10	132866	13287	0.69	<20
1,2-Dichloroethane (1,2-DCA)	ELCD	3.53	10	5072660	507266	-5.46	<20
Trichloroethene (TCE)	ELCD	4.56	10	5441547	544155	-6.39	<20
Toluene	PID	7.07	10	125055	12506	1.82	<20
1,1,2-Trichloroethane (1,1,2-TCA)	ELCD	7.86	10	5682145	568215	5.56	<20
Tetrachloroethene (PCE)	ELCD	7.99	10	6404558	640456	-0.02	<20
1,1,1,2-Tetrachloroethane	ELCD						<20
Ethylbenzene	PiD						<20
m&p-Xylene	PiD	9.76	10	129752	12975	1.45	<20
o-Xylene	PID	10.33	10	110461	11046	1.25	<20
1,1,2,2-Tetrachloroethane	ELCD					- · - 	<20

Appendix C DAILY QC CHROMATOGRAMS

AeroVironment Inc.

Data Worksheet GC/PID/ELCD Sample ID: MID STANDARD 1

Control #: LABQC

Project name: Geosystems Sample date: 08/18/94 Project#: 300677

Project#: 300677
File name: 0818M12
Location: No. Hollywood
Analysis: 8010/8020
Analyst: Jay Berger

Sampled by: JB Lab ID: Truck 1

GC ID: GC2 PID/ELCD

Sample type: MD1 Calib std: ves Sample time: 10:23 Received time: NA Injection time: 10:23 Probe depth: NA

Probe depth: NA Feet
Purge volume: NA CC
Sample flow: NA CC/min
Vacuum: NA "H2O"

Syringe: Hamilton 1uL

Dilution factor: 1

Calibration date: 07/22/94

Injection volume: 0.5

uL

Calib std: yes					
	Standard	· · · · ·	Sample		
Compound	RT	Avg. CF	RT	Area	mg/L.
Dichlorodifluoromethane	0.59	138477			
Vinyl chloride	0.71	271379			
Chloroethane	0.87	195402			
Trichlorofluoromethane	0.97	290771			
1,1,2-Trichloro-trifluoroethane	1.23	334184			
1,1-Dichloroethene (1,1-DCE)	1.22	443468	1.24	4286960	19.33
Dichloromethane (Methylene chloride)	1.50	533175			
trans-1,2-Dichloroethene(t-1,2-DCE)	1.67	486172	1.68	4937207	20.31
1,1-Dichloroethane (1,1-DCA)	1.96	499909	1.98	5272051	21.09
cis-1,2-Dichloroethene (c-1,2-DCE)	2.46	501846	2.48	5179579	20.64
Chloroform	2.81	644803			
1,1,1-Trichloroethane (1,1,1-TCA)	2.97	559745	2.99	5821740	20.80
Carbon tetrachloride	3.16	660954			
Benzene	3.41	13196	3.44	133228	20.19
1,2-Dichloroethane (1,2-DCA)	3.48	536556	3,51	5614938	20.93
Trichloroethene (TCE)	4.52	581271	4.55	5896768	20.29
Toluene	7.02	12282	7.05	124493	20.27
1,1,2-Trichloroethane (1,1,2-TCA)	7.82	538285	7.84	5478431	20.36
Tetrachloroethene (PCE)	7.94	640559	7.97	6269731	19.58
1,1,1,2-Tetrachloroethane	9.49	607279			
Ethylbenzene	9.53	10974			
m&p-Xylene	9.73	12790	9.75	128882	20.15
o-Xylene	10.30	10909	10.32	109480	20.07
1,1,2,2-Tetrachloroethane	11.41	602475			

Notes:

8/22/94,9:49 AM-0818M12.XLS Ver 3.0 (8010/8020) 04/21/94

^{1-&}quot;Standard RT" is the retention time for the standard.

^{2-&}quot;Standard AVE. CF" is the average calibration factor for this instrument.

^{3-&}quot;Sample area" is the area under the peak.

^{4-&}quot;Sample mg/L" is the concentration of the analyte in the sample

AeroVironment Inc.

Analysis Results GC/PID/HALL

Sample ID: MID STANDARD 1

Control #: LABQC

Sample date: 08/18/94

Project#: 300677

Location: No. Hollywood Analysis: 8010/8020

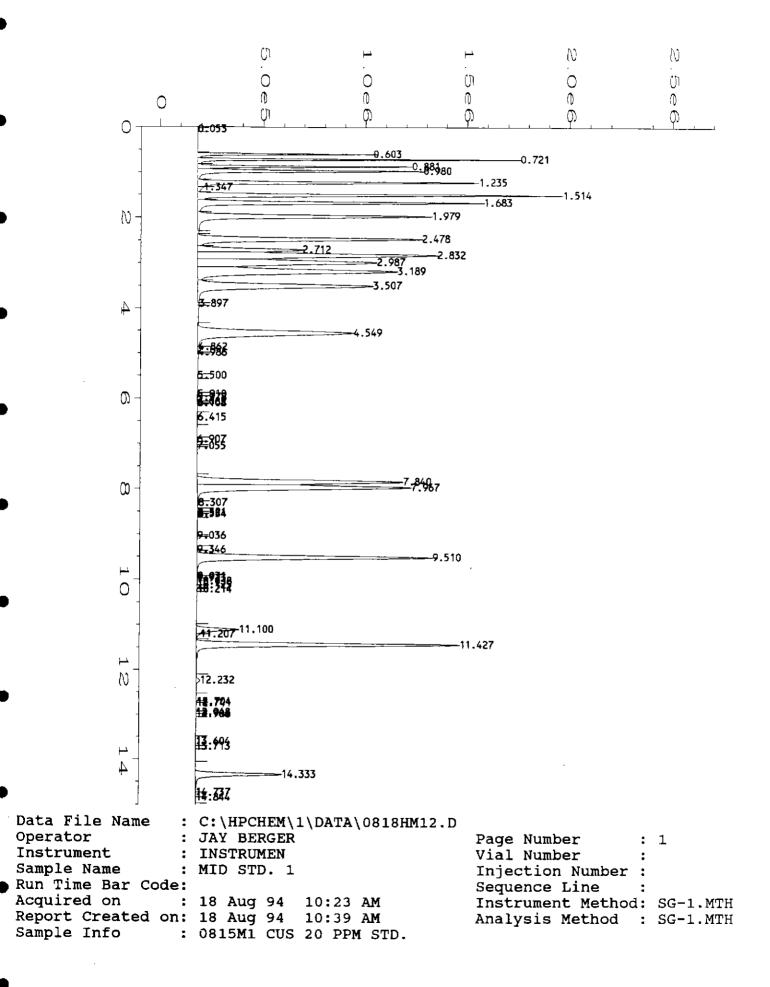
Sample type: MD1

Sampled by: JB Sample time: 10:23

Probe depth: NA

Vacuum: NA

Feet


"H2O

	MDL	Sample	reference	precent
Compound	ug/L	mg/L	mg/L	different
Dichlorodifluoromethane	0.42			umorone
Vinyl chloride	0.16			
Chloroethane	0.10			
Trichlorofluoromethane	0.21			
1,1,2-Trichloro-trifluoroethane	0.10			
1,1-Dichloroethene (1,1-DCE)	0.18	19.33	20	-3.3
Dichloromethane (Methylene chloride)	0.15		20	-5.5
trans-1,2-Dichloroethene(t-1,2-DCE)	0.18	20.31	20	1.6
1,1-Dichloroethane (1,1-DCA)	0.17	21.09	20	5.5
cis-1,2-Dichloroethene (c-1,2-DCE)	0.16	20.64	20	3.2
Chloroform	0.22			J.L
1,1,1-Trichloroethane (1,1,1-TCA)	0.19	20.80	20	4.0
Carbon tetrachloride	0.53		25	7.0
Benzene	0.87	20.19	20	1.0
1,2-Dichloroethane (1,2-DCA)	0.26	20.93	20	4.6
Trichloroethene (TCE)	0.16	20.29	20	1.4
Toluene	0.18	20.27	20	1.4
1,1,2-Trichloroethane (1,1,2-TCA)	0.17	20.36	20	1.8
Tetrachloroethene (PCE)	0.21	19.58	20	-2.1
1,1,1,2-Tetrachloroethane	0.31			4.1
Ethylbenzene	0.23			
m&p-Xylene	0.27	20.15	20	0.8
o-Xylene	0.41	20.07	20	0.4
1,1,2,2-Tetrachioroethane	0.22			5. (

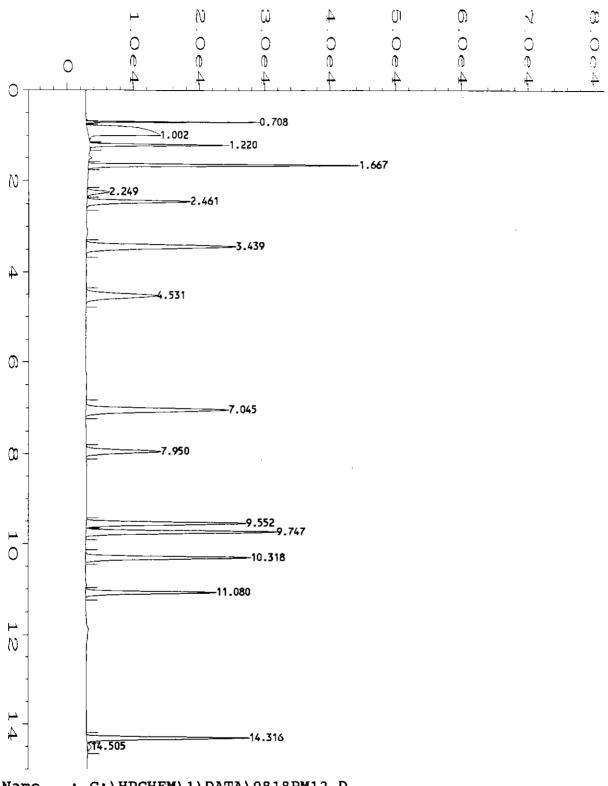
Notes:

^{1-&}quot;MDL ug/L" is the method limit.

^{2-&}quot;Sample mg/L" is the concentration of the analyte in the sample

Data File Name : C:\HPCHEM\1\DATA\0818HM12.D

Operator : JAY BERGER Page Number : 2
Instrument : INSTRUMEN Vial Number :
Sample Name : MID STD. 1 Injection Number :
Run Time Bar Code: Sequence Line :


Acquired on : 18 Aug 94 10:23 AM Instrument Method: SG-1.MTH Report Created on: 18 Aug 94 10:39 AM Analysis Method : SG-1.MTH

Sig. 1 in C:\HPCHEM\1\DATA\0818HM12.D

Pk#	Ret Time	Area	Height	Type	Width	Area %
' 1 [']	0.053	1470	762	BV '	0.030	0.0015
2	0.603	1560091	885694	PV	0.027	1.6279
3	0.721	2870300	1585932	VV	0.027	2.9951
4	0.881	2176821	1051767	VV	0.031	2.2714
5	0.980	3217763	1120917	VV	0.043	3.3576
6	1.235	4286960	1381611	VV	0.048	4.4733
7	1.347	125858	29549	VV	0.055	0.1313
8	1.514	5616832	1788815	VV	0.047	5.8610
9	1.683	4937207	1403031	VV	0.054	5.1518
10	1.979	5272051	1149411	VV	0.068	5.5012
11	2.478	5179579	1099051	VV	0.075	5.4047
12	2.712	2371108	512974	VV	0.070	2.4742
13	2.832	6732321	1183332	VV	0.085	7.0250
14	2.987	5821740	875162	VV	0.093	6.0748
15	3.189	6884332	979103	VV	0.102	7.1836
16	3.507	5614938	858058	VV	0.094	5.8590
17	3.897	25737	8667	VV	0.039	0.0269
18	4.549	5896768	762494	VV	0.110	6.1531
19	4.862	46508	6863	VV	0.113	0.0485
20	4.986	14181	5593	VV	0.035	0.0148
21	5.500	16929	3312	VV	0.065	0.0177
22	5.910	10383	2881	VV	0.049	0.0108
23	5.978	12703	2487	VV	0.064	0.0133

Data File Name :	C:\HPCHEM\1\DATA\0818HM12.I)
Operator :	JAY BERGER	Page Number : 3
Instrument :	INSTRUMEN	Vial Number :
Sample Name :	MID STD. 1	Injection Number :
Run Time Bar Code:		Sequence Line :
	18 Aug 94 10:23 AM	Instrument Method: SG-1.MTH
Report Created on:	18 Aug 94 10:39 AM	Analysis Method : SG-1.MTH
24 6.082	3702 195	66 VV 0.032 0.0039
25 6.108	3112 183	.3 VV 0.029 0.0032
26 6.415	28241 259	
27 6.907	3810 102	
28 7.055		76 PV 0.029 0.0005
29 7.840	5478431 100573	
30 7.967	6269731 104594	5 VV 0.090 6.5423
31 8.307	30436 510	0.0318 0.0318
32 8.521	1734 103	
33 8.554	2535 76	50 VV 0.046 0.0026
34 9.036	722 60	0.0008 PV 0.020 0.0008
35 9.346	3126 85	33 PV 0.047 0.0033
36 9.510	6121552 115392	27 VV 0.078 6.3877
37 9.931	9686 285	
38 9.973	8072 272	
39 10.038	16310 345	
40 10.125	8018 272	
41 10.214	6640 274	
42 11.100	944279 20577	
43 11.207	50749 1823	
44 11.427	6146667 128730	
45 12.232	99932 1755	55 VV 0.087 0.1043
46 12.704	3342 207	77 BV 0.027 0.0035
47 12.741	8758 249	05 VV 0.058 0.0091
48 12.948	1454 68	34 PV 0.035 0.0015
49 12.986	2312 109	94 VV 0.032 0.0024
50 13.604	2798 69	95 BV 0.062 0.0029
51 13.713	2131 99	98 VV 0.036 0.0022
52 14.333	1871176 41803	.4 BV 0.069 1.9525
53 14.737	7817 165	
54 14.844	3753 83	.8 VB 0.076 0.0039

Total area = 9.58341E+007

Data File Name : C:\HPCHEM\1\DATA\0818PM12.D Operator Page Number : JAY BERGER Vial Number Instrument : INSTRUMEN Injection Number: Sample Name : MID STD. 1 Run Time Bar Code: Sequence Line Instrument Method: SG-1.MTH Acquired on : 18 Aug 94 10:23 AM Analysis Method : SG-1.MTH

Report Created on: 18 Aug 94 10:39 AM Sample Info : 0815M1 CUS 20 PPM STD.

Data File Name : C:\HPCHEM\1\DATA\0818PM12.D
Operator : JAY BERGER
Instrument : INSTRUMEN
Sample Name : MID STD. 1 Page Number : 2 Vial Number : Injection Number: Run Time Bar Code: Sequence Line :

Acquired on : 18 Aug 94 10:23 AM Instrument Method: SG-1.MTH Report Created on: 18 Aug 94 10:39 AM Analysis Method : SG-1.MTH

Sig. 2 in C:\HPCHEM\1\DATA\0818PM12.D

•	Pk#	Ret Time	Area	Height	Туре	Width	Area %
	1	0.708	27326	26796	VV	0.016	2.0667
	2	1.002	124073	10838	PΒ	0.141	9.3840
	3	1.220	52891	21139	BB	0.039	4.0003
	4	1.667	115530	41339	BV	0.044	8.7379
	5	2.249	15227	3369	BV	0.070	1.1516
	6	2.461	65792	15673	VB	0.066	4.9760
	7	3.439	133228	22762	BB	0.091	10.0764
	8	4.531	77755	10761	BB	0.114	5.8808
	9	7.045	124493	21627	BB	0.091	9.4157
	10	7.950	60385	11303	BV	0.084	4.5671
	11	9.552	110064	24356	BV	0.071	8.3244
	12	9.747	128882	29061	VΒ	0.070	9.7476
	13	10.318	109480	25124	BB	0.069	8.2802
	14	11.080	79189	19810	VB	0.063	5.9893
	15	14.316	93696	24764	BV	0.059	7.0864
	16	14.505	4172	584	VB	0.108	0.3156

		•
		•
		•
		•
		•
		•
		•
		•
,		•
		•
		•

AeroVironment Inc.

Data Worksheet GC/PID/ELCD Sample ID: QC STANDARD 1

Control #: LABQC

Project name: Geosystems
Sample date: 08/18/94
Project#: 300677
File name: 0818Q12
Location: No. Hollywood
Analysis: 8010/8020
Analyst: Jay Berger
Sampled by: JB
Lab ID: Truck 1

Sampled by: JB

Lab ID: Truck 1

GC ID: GC2 PID/ELCD

Sample type: QC1

Sample time: 16:05 Received time: NA Injection time: 16:05 Probe depth: NA

Probe depth: NA Feet
Purge volume: NA CC
Sample flow: NA CC/min
Vacuum: NA "H2O
Syringe: Hamilton 1uL

Dilution factor: 1
Calibration date: 07/22/94
Injection volume: 0.5 uL

Calib std: yes	mjeot	ion volume, b.	.	_	
•	Standard		Sample		
Compound	RT	Avg. CF	RT	Area	mg/L
Dichlorodifluoromethane	0.59	138477			···· <u>····</u>
Vinyl chloride	0.71	271379			
Chloroethane	0.87	195402			
Trichlorofluoromethane	0.97	290771			
1,1,2-Trichloro-trifluoroethane	1.23	334184			
1,1-Dichloroethene (1,1-DCE)	1.22	443468	1.24	3975381	17.93
Dichloromethane (Methylene chloride)	1.50	533175		33.0001	17.00
trans-1,2-Dichloroethene(t-1,2-DCE)	1.67	486172	1.69	4351241	17.90
1,1-Dichloroethane (1,1-DCA)	1.96	499909	1.99	4712140	18.85
cis-1,2-Dichloroethene (c-1,2-DCE)	2.46	501846	2.49	4666396	18.60
Chloroform	2.81	644803			10.00
1,1,1-Trichloroethane (1,1,1-TCA)	2.97	559745	3.01	5282631	18.88
Carbon tetrachloride	3.16	660954			10.00
Benzene	3.41	13196	3.46	132866	20.14
1,2-Dichloroethane (1,2-DCA)	3.48	536556	3.53	5072660	18.91
Trichloroethene (TCE)	4.52	581271	4.56	5441547	18.72
Toluene	7.02	12282	7.07	125055	20.36
1,1,2-Trichloroethane (1,1,2-TCA)	7.82	538285	7.86	5682145	21.11
Tetrachloroethene (PCE)	7.94	640559	7.99	6404558	20.00
1,1,1,2-Tetrachloroethane	9.49	607279	7.00	0 10 1000	20.00
Ethylbenzene	9.53	10974			
m&p-Xylene	9.73	12790	9.76	129752	20.29
o-Xylene	10.30	10909	10.33	110461	20.25
1,1,2,2-Tetrachloroethane	11.41	602475		,,,,,,	20.20

Notes:

8/22/94,9:51 AM-0818Q12.XLS

^{1-&}quot;Standard RT" is the retention time for the standard.

^{2-&}quot;Standard AVE. CF" is the average calibration factor for this instrument.

^{3-&}quot;Sample area" is the area under the peak.

^{4-&}quot;Sample mg/L" is the concentration of the analyte in the sample

AeroVironment Inc.

Analysis Results
GC/PID/HALL

Sample ID: QC STANDARD 1

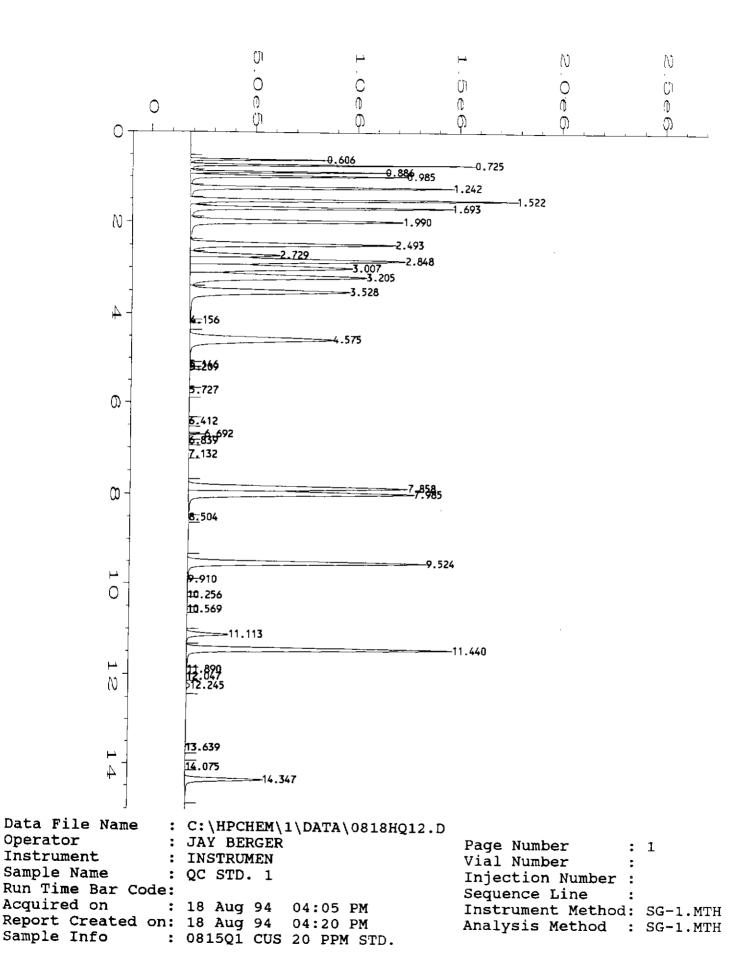
Control #: LABQC

Sample date: 08/18/94 Project#: 300677

> Location: No. Hollywood Analysis: 8010/8020

Sample type: QC1

Sampled by: JB Sample time: 16:05


Probe depth: NA Vacuum: NA Feet "H2O

	MDL	Sample	reference	precent
Compound	ug/L	mg/L	mg/L	different
Dichlorodifluoromethane	0.42			
Vinyl chloride	0.16			
Chloroethane	0.10			
Trichlorofluoromethane	0.21			
1,1,2-Trichloro-trifluoroethane	0.10			
1,1-Dichloroethene (1,1-DCE)	0.18	17.93	20	-10.4
Dichloromethane (Methylene chloride)	0.15			,
trans-1,2-Dichloroethene(t-1,2-DCE)	0.18	17.90	20	-10.5
1,1-Dichloroethane (1,1-DCA)	0.17	18.85	20	-5.7
cis-1,2-Dichloroethene (c-1,2-DCE)	0.16	18.60	20	-7.0
Chloroform	0.22			7.0
1,1,1-Trichloroethane (1,1,1-TCA)	0.19	18.88	20	-5.6
Carbon tetrachloride	0.53			5.5
Benzene	0.87	20,14	20	0.7
1,2-Dichloroethane (1,2-DCA)	0.26	18.91	20	-5.5
Trichloroethene (TCE)	0.16	18.72	20	-6.4
Toluene	0.18	20.36	20	1.8
1,1,2-Trichloroethane (1,1,2-TCA)	0.17	21,11	20	5.6
Tetrachloroethene (PCE)	0.21	20.00	20	
1,1,1,2-Tetrachloroethane	0.31			
Ethylbenzene	0.23			
m&p-Xylene	0.27	20.29	20	1.4
o-Xylene	0.41	20.25	20	1.3
1,1,2,2-Tetrachloroethane	0.22			

Notes:

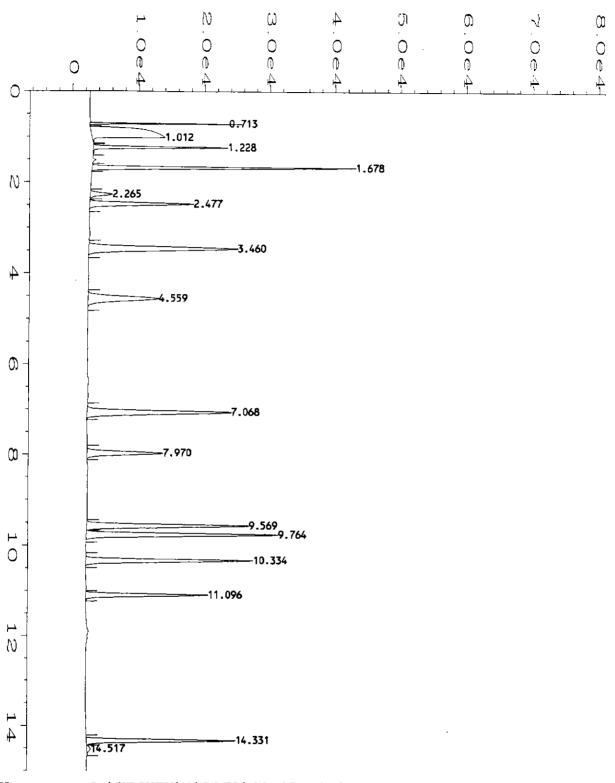
^{1-&}quot;MDL ug/L" is the method limit.

^{2-&}quot;Sample mg/L" is the concentration of the analyte in the sample

•

Data File Name : C:\HPCHEM\1\DATA\0818HQ12.D

Operator : JAY BERGER Page Number : Instrument : INSTRUMEN Vial Number : Sample Name : QC STD. 1 Injection Number : Run Time Bar Code: Sequence Line :


Acquired on : 18 Aug 94 04:05 PM Instrument Method: SG-1.MTH Report Created on: 18 Aug 94 04:20 PM Analysis Method : SG-1.MTH

Sig. 1 in C:\HPCHEM\1\DATA\0818HQ12.D

Pk#	Ret Time	Area	Height	Туре	Width	Area %
				·		
1	0.606	1079071	690554	BV	0.024	1.2311
2	0.725	2313714	1410903	VV	0.025	2.6397
3	0.886	1898604	978192	VV	0.030	2.1661
4	0.985	2892972	1064015	VV	0.042	3.3006
5	1.242	3975381	1291750	VV	0.047	4.5355
6	1.522	4931108	1607263	VV	0.047	5.6259
7	1.693	4351241	1289714	VV	0.052	4.9643
8	1.990	4712140	1039362	VV	0.070	5.3761
9	2.493	4666396	1006667	VV	0.072	5.3239
10	2.729	1975022	437479	VV	0.069	2.2533
11	2.848	6058829	1053147	VV	0.088	6.9125
12	3.007	5282631	79 1968	VV	0.103	6.0270
13	3.205	6061645	863141	VV	0.107	6.9157
14	3.528	5072660	782244	VV	0.100	5.7874
15	4.156	15633	3683	VV	0.060	0.0178
16	4.575	5441547	699053	VV	0.123	6.2083
17	5.146	13223	2352	VV	0.077	0.0151
18	5.209	7942	2215	VV	0.054	0.0091
19	5.727	5212	783	PΒ	0.089	0.0059
20	6.412	4985	815	PV	0.092	0.0057
21	6.692	99675	73946	PV	0.042	0.1137
. 22	6.839	6577	1303	VV	0.068	0.0075

•	Operator Instrument Sample Name Run Time Bar Code:	QC STD. 1 18 Aug 94 04:05 I	Р м	Vial Inject Seque Inst	Number Number Stion Number : ence Line sument Method : ysis Method	SG-1.MTH
)	23 7.132	6062	517	VV	0.150	0.0069
	24 7.858	5682145	1071302	PV	0.081	6.4828
	25 7.985	6404558	1105268	VV	0.088	7.3070
	26 8.504	10680	1911	VV	0.076	0.0122
	27 9.524	6064795	1166951	PV	0.081	6.9193
	28 9.910	30835	2604	VV	0.147	0.0352
)	29 10.256	6826	1485	VV	0.063	0.0078
	30 10.569	5746	1304	VV	0.066	0.0066
	31 11.113	896930	200393	PV	0.070	1.0233
	32 11.440	5897741	1299188	VV	0.071	6.7287
	33 11.890	17108	2399	VV	0.092	0.0195
	34 12.047	10358	1366	VV	0.107	0.0118
•	35 12.245	90390	17266	VV	0.079	0.1031
	36 13.639	3187	1101	BV	0.050	0.0036
	37 14.075	1941	709	BV	0.049	0.0022
	38 14.347	1654472	376269	PΛ	0.067	1.8876

Total area = 8.765E+007

Data File Name : C:\HPCHEM\1\DATA\0818PQ12.D Operator : JAY BERGER Page Number : 1 Instrument Vial Number INSTRUMEN Sample Name Injection Number: : QC STD. 1 Run Time Bar Code: Sequence Line Acquired on 04:05 PM Instrument Method: SG-1.MTH : 18 Aug 94 Report Created on: 18 Aug 94 Analysis Method : SG-1.MTH 04:20 PM Sample Info : 0815Q1 CUS 20 PPM STD.

Data File Name : C:\HPCHEM\1\DATA\0818PQ12.D

Operator : JAY BERGER
Instrument : INSTRUMEN
Sample Name : QC STD. 1 Page Number : 2 Vial Number : Injection Number : Sequence Line : Run Time Bar Code:

Acquired on : 18 Aug 94 04:05 PM Instrument Method: SG-1.MTH Report Created on: 18 Aug 94 04:20 PM Analysis Method : SG-1.MTH

ıg.			1\1\DATA\0818PQ1	L2.D			
	Pk#	Ret Time	Area	Height	Type	Width	Area %
	'						
•	1	0.713	23660	23308	VV	0.017	1.8021
	2	1.012	129681	11003	PB	0.145	9.8778
	3	1.228	52495	20490	BB	0.040	3.9986
	4	1.678	113077	40365	BB	0.044	8.6130
	5	2.265	15502	3376	BV	0.071	1.1808
	6	2.477	66043	15752	VB	0.065	5.0305
	7	3.460	132866	22677	BB	0.092	10.1203
	8	4.559	77713	10691	BB	0.114	5.9194
	9	7.068	125055	21879	BB	0.091	9.5254
	10	7.970	60725	11471	BB	0.083	4.6254
	11	9.569	111626	24693	BV	0.071	8.5025
	12	9.764	129752	29234	VB	0.069	9.8831
	13	10.334	110461	25442	BB	0.068	8.4138
	14	11.096	73546	18535	BB	0.062	5.6020
	15	14.331	86763	22710	BV	0.060	6.6087
	16	14.517	3893	555	VB	0.105	0.2965

	m.
	•
	_
	_
	•
	_
	•
	•
	•
	•
	•
	•
	_
	•
	•
	•
	_
	•
•	
	•

Appendix D

THREE POINT CALIBRATION CURVE RESULTS WITH CHROMATOGRAMS

SOIL GAS INITIAL CALIBRATION

SITE NAME: Monrovia

ANALYST: Jay Berger

NORMAL INJECTION VOLUME: 0.5ul.

LAB NAME: AeroVironment Inc.

STD LOT ID NO. CUS-881/H-0911&HC-480/H-0054

DATE: 07/22/94

INSTRUMENT ID: GC2/PID/ELCD

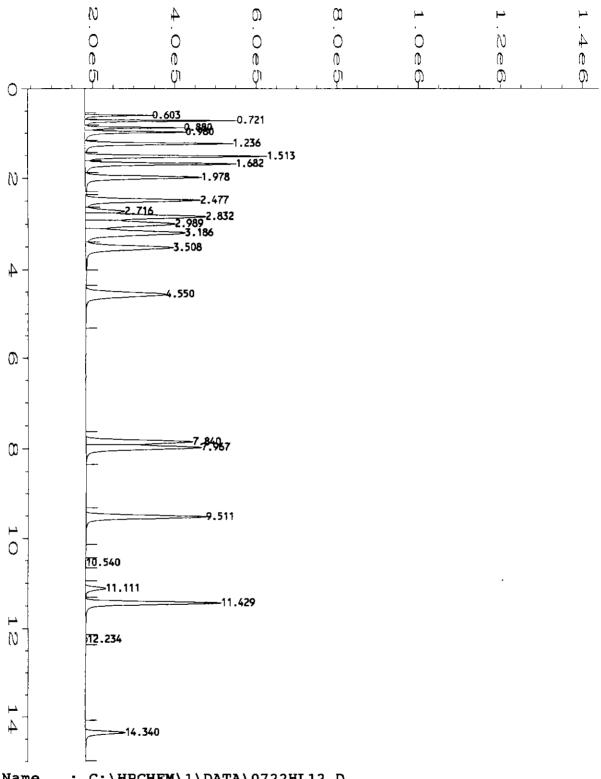
COMPOUND	DETECTOR	AVE. CF	SD	%RSD	ACC RGE	
Dichlorodifluoromethane	ELCD	138477	18474	13.34	<30	
Vinyl chloride	ELCD	271379	17755	6.54	<30	
Chloroethane	ELCD	195402	14292	7.31	<30	
Trichlorofluoromethane	ELCD	290771	19904	6.85	<30	
1,1,2-Trichloro-trifluoroethane	ELCD	334184	8527	2.55	<30	
1,1-Dichloroethene (1,1-DCE)	ELCD	443468	32509	7.33	<20	
Dichloromethane (Methylene chloride)	ELCD	533175	39117	7.34	<20	
rans-1,2-Dichloroethene(t-1,2-DCE)	ELCD	486172	44920	9.24	<20	
I,1-Dichloroethane (1,1-DCA)	ELCD	499909	38626	7.73	<20	
cis-1,2-Dichloroethene (c-1,2-DCE)	ELCD	501846	38981	7.77	<20	
Chloroform	ELCD	644803	45839	7.11	<20	
I,1,1-Trichloroethane (1,1,1-TCA)	ELCD	559745	39499	7.06	<20	
Carbon tetrachloride	ELCD	660954	47544	7.19	<20	
Benzene	PID	13196	710	5.38	<20	
,2-Dichloroethane (1,2-DCA)	ELCD	536556	44460	8.29	<20	
richloroethene (TCE)	ELCD	581271	44525	7.66	<20	
Toluene Toluene	PID	12282	641	5.22	<20	
,1,2-Trichloroethane (1,1,2-TCA)	ELCD	538285	30075	5.59	<20	
etrachloroethene (PCE)	ELCD	640559	47345	7.39	<20	
,1,1,2-Tetrachloroethane	ELCD	607279	39377	6.48	<20	
thylbenzene	PID	10974	498	4.53	<20	
n&p-Xylene	PID	12790	606	4.74	<20	
-Xylene	PID	10909	576	5.28	<20	
,1,2,2-Tetrachloroethane	ELCD	602475	43074	7.15	<20	

SOIL GAS INITIAL CALIBRATION

SITE NAME: Monrovia

LAB NAME: AeroVironment Inc.

DATE: 07/22/94


ANALYST: Jay Berger

STD LOT ID NO. CUS-881/H-0911&HC-480/H-0054

INSTRUMENT ID: GC2/PID/ELCD

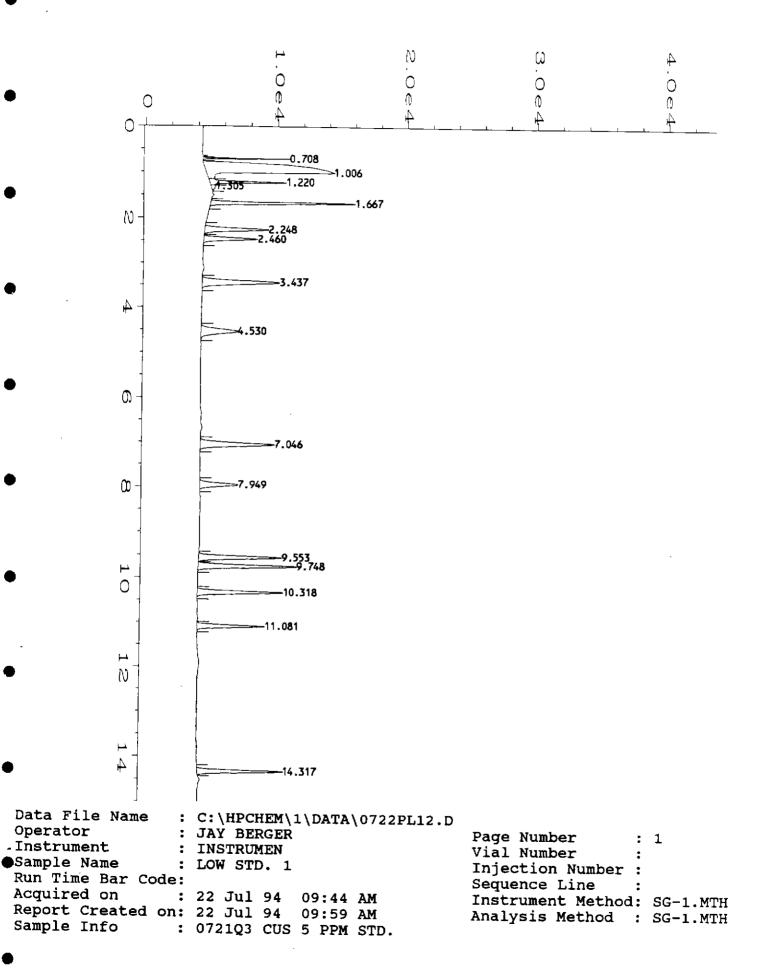
NORMAL INJECTION VOLUME: 0.5uL

	İ		18	T			2 ND				3 RD			
COMPOUND	DETECTOR	RT	AREA	ng	CF	RT	AREA	ng	CF	RT	AREA	ng	CF	
Dichlorodifluoromethane	ELCD	0.60	303351	2.5	121340	0.59	1580478	10.0	158048	0.59	3401045	25.0	136042	
Vinyl chloride	ELCD	0.72	690534	2.5	276214	0.71	2862161	10.0	286216	0.71	6292684	25.0	251707	
Chloroethane	ELCD	0.88	511234	2.5	204494	0.87	2027833	10.0	202783	0.87	4473223	25.0	178929	
Trichlorofluoromethane	ELCD	0.98	756879	2.5	302752	0.97	3017660	10.0	301766	0.96	6694873	25.0	267795	
1,1,2-Trichloro-trifluoroethane	ELCD	1.22	823818	2.5	329527	1.23	3440256	10.0	344026	1.24	8224972	25.0	328999	
1,1-Dichloroethene (1,1-DCE)	ELCD	1.24	1179137	2.5	471655	1.22	4508452	10.0	450845	1.22	1E+07	25.0	407904	
Dichloromethane (Methylene chloride)	ELCD	1.51	1421935	2.5	568774	1.50	5394522	10.0	539452	1.49	1.2E+07	25.0	491300	
trans-1,2-Dichloroethene(t-1,2-DCE)	ELCD	1.68	1326839	2.5	530736	1.67	4868767	10.0	486877	1.66	1.1E+07	25.0	440904	
1,1-Dichloroethane (1,1-DCA)	ELCD	1.99	1343439	2.5	537376	1.96	5021305	10.0	502131	1.95	1.2E+07	25.0	460220	
cis-1,2-Dichloroethene (c-1,2-DCE)	ELCD	2.48	1346493	2.5	538597	2.46	5059770	10.0	505977	2.44	1.2E+07	25.0	460964	
Chloroform	ELCD	2.83	1716071	2.5	686428	2.81	6523043	10.0	652304	2.79	1.5E+07	25.0	595676	
1,1,1-Trichloroethane (1,1,1-TCA)	ELCD	2.99	1492643	2.5	597057	2.97	5638056	10.0	563806	2.95	1.3E+07	25.0	518372	
Carbon tetrachloride	ELCD	3.19	1759530	2.5	703812	3.16	6692393	10.0	669239	3.14	1.5E+07	25.0	609812	
Benzene	PID	3.44	34692	2.5	13877	3.41	132494	10.0	13249	3.39	311516	25.0	12461	
1,2-Dichloroethane (1,2-DCA)	ELCD	3.51	1447439	2.5	578976	3.48	5403894	10.0	540389	3.46	1.2E+07	25.0	490304	
Trichloroethene (TCE)	ELCD	4.55	1555057	2.5	622023	4.52	5880433	10.0	588043	4.49	1.3E+07	25.0	533748	
Toluene	PID	7.05	32249	2.5	12900	7.02	123253	10.0	12325	7.00	290512	25.0	11620	
1,1,2-Trichloroethane (1,1,2-TCA)	ELCD	7.84	1408521	2.5	563408	7.82	5464875	10.0	546488	7.80	1.3E+07	25.0	504960	
Tetrachloroethene (PCE)—	ELCD	7.97	1709118	2.5	683647	7.94	6481551	10.0	648155	7.92	1.5E+07	25.0	589876	
1,1,1,2-Tetrachloroethane	ELCD	9.51	1602740	2.5	641096	9.49	6166922	10.0	616692	9.47	1.4E+07	25.0	564048	
Ethylbenzene	PID	9.55	28659	2.5	11464	9.53	109882	10.0	10988	9.52	261719	25.0	10469	
m&p-Xylene	PID	9.75	33451	2.5	13380	9.73	128194	10.0	12819	9.71	304242	25.0	12170	
o-Xylene	PID	10.32	28702	2.5	11481	10.30	109195	10.0	10920	10.28	258202	25.0	10328	
1,1,2,2-Tetrachloroethane	ELCD	11.43	1606650	2.5	642660	11.41	6077651	10.0	607765	11.40	1.4E+07	25.0	557000	

Data File Name : C:\HPCHEM\1\DATA\0722HL12.D Operator : JAY BERGER Page Number : 1 Instrument Vial Number : INSTRUMEN Injection Number: Sample Name : LOW STD. 1 Run Time Bar Code: Sequence Line Acquired on 09:44 AM Instrument Method: SG-1.MTH

Acquired on : 22 Jul 94 09:44 AM Instrument Method: SG-1.MTH Report Created on: 22 Jul 94 09:59 AM Analysis Method : SG-1.MTH Sample Info : 0721Q3 CUS 5 PPM STD.

Data File Name : C:\HPCHEM\1\DATA\0722HL12.D

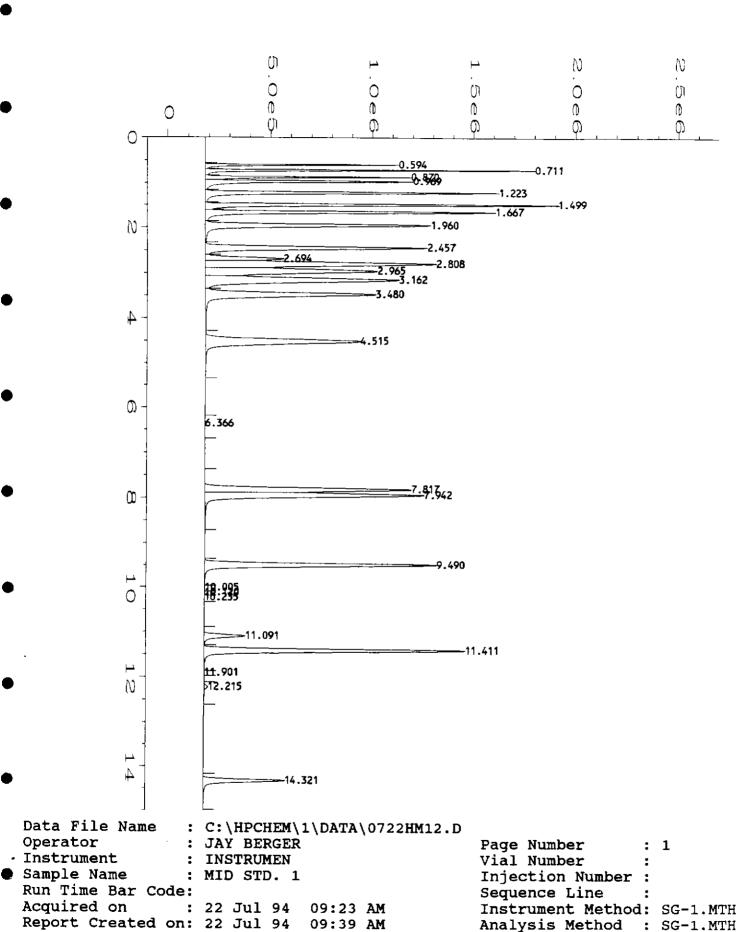

Cperator : JAY BERGER Page Number : 2
Instrument : INSTRUMEN Vial Number :
Sample Name : LOW STD. 1 Injection Number :
Run Time Bar Code: Sequence Line :

Acquired on : 22 Jul 94 09:44 AM Instrument Method: SG-1.MTH Report Created on: 22 Jul 94 09:59 AM Analysis Method : SG-1.MTH

Sig. 1 in C:\HPCHEM\1\DATA\0722HL12.D

١g.		in C:\HPCHEN	1\1\DATA\0722HL 1	L2.D			
	Pk#	Ret Time	Area	Height	Type	Width	Area %
	1	0.603	303351	171344	PV	0.026	1.2449
	2	0.721	690534	375129	VV	0.027	2.8339
	3	0.880	511234	242937	VV	0.032	2.0981
	4	0.980	756879	248901	VV	0.045	3.1062
	5	1.236	1179137	363533	VV	0.049	4.8392
	6	1.513	1421935	446968	VV	0.049	5.8356
	7	1.682	1326839	371223	VV	0.054	5.4453
	8	1.978	1343439	285118	VV	0.071	5.5135
	9	2.477	1346493	281620	VV	0.073	5.5260
	10	2.716	427351	95564	VV	0.067	1.7538
	11	2.832	1716071	294692	VV	0.089	7.0427
	12	2.989	1492643	219107	VV	0.104	6.1258
	13	3.186	1759530	244694	VV	0.110	7.2211
	14	3.508	1447439	214533	VV	0.103	5.9403
	15	4.550	1555057	196150	VB	0.123	6.3819
	16	7.840	1408521	261558	BV	0.082	5.7806
	17	7.967	1709118	282966	VV	0.091	7.0142
	18	9.511	1602740	294864	BV	0.084	6.5776
	19	10.540	3844	543	PV	0.095	0.0158
	20	11.111	247048	49173	BV	0.076	1.0139
	21	11.429	1606650	332383	VV	0.074	6.5937
	22	12.234	20533	4253	PV	0.077	0.0843
	23	14.340	490116	97337	BBA	0.076	2.0114

Total area = 2.43665E+007



Data File Name : C:\HPCHEM\1\DATA\0722PL12.D
Operator : JAY BERGER Page Number Instrument : INSTRUMEN Vial Number Instrument : INSTRUMEN
Sample Name : LOW STD. 1 Injection Number: Sequence Line : Run Time Bar Code:

Acquired on : 22 Jul 94 09:44 AM Instrument Method: SG-1.MTH Report Created on: 22 Jul 94 09:59 AM Analysis Method : SG-1.MTH

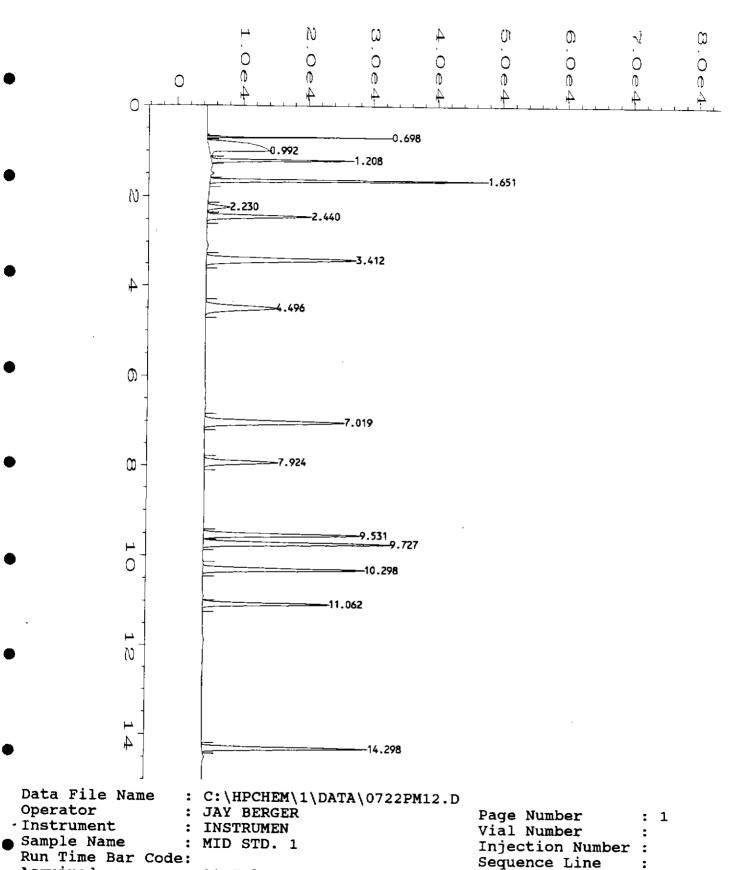
2 in C+\HPCHEM\1\DATA\0722PI.12.D Sig.

g	. 2]	in C:\HPCHE	1/1/DATA/0/22PL				_
	Pk#	Ret Time	Area	Height	Type	Width	Area %
	'ı'	0.708	6817	6852	VV	0.016	1.5263
	. 2	1.006	113284	9767	PV	0.139	25.3644
	3	1.220	16356	5830	VV	0.043	3.6622
	4	1.305	1661	343	VB	0.079	0.3719
	5	1.667	30705	11079	BB	0.043	6.8750
	6	2.248	21773	4862	BV	0.070	4.8750
	7	2.460	17062	4093	VΒ	0.065	3.8202
	8	3.437	34692	5937	BB	0.087	7.7676
	9	4.530	20239	2800	BB	0.111	4.5316
	10	7.046	32249	5652	BB	0.090	7.2205
	11	7.949	15642	2914	BB	0.083	3.5023
	12	9.553	28659	6328	BV	0.071	6.4169
	13	9.748	33451	7520	VB	0.070	7.4898
	14	10.318	28702	6535	BB	0.069	6.4263
	15	11.081	20481	5149	BB	0.062	4.5858
	16	14.317	24852	6548	BV	0.060	5.5644

: 0721Q1 CUS 20 PPM STD.

Sample Info

Data File Name : C:\HPCHEM\1\DATA\0722HM12.D


Cperator : JAY BERGER Page Number : 2
Instrument : INSTRUMEN Vial Number :
Sample Name : MID STD. 1 Injection Number :
Run Time Bar Code: Sequence Line :

Acquired on : 22 Jul 94 09:23 AM Instrument Method: SG-1.MTH Report Created on: 22 Jul 94 09:39 AM Analysis Method : SG-1.MTH

Sig. 1 in C:\HPCHEM\1\DATA\0722HM12.D

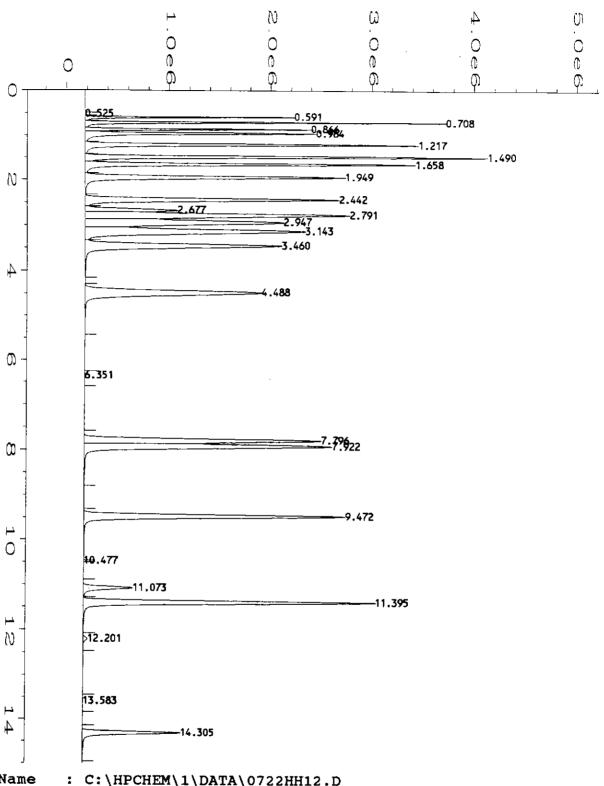
Pk#	Ret Time	1\1\DATA\0722HM1 Area	2.D Height	Туре	Width	Area %
1	0.594	1580478	956098	PV	0.025	1.6930
2	0.711	2862161	1637942	VV	0.026	3.0659
3	0.870	2027833	1012452	VV	0.030	2.1722
4	0.969	3017660	1028132	VV	0.044	3.2324
5	1.223	4508452	1445369	VV	0.048	4.8293
6	1.499	5394522	1745786	VV	0.047	5.7785
7	1.667	4868767	1428453	VV	0.052	5.2153
8	1.960	5021305	1107151	VV	0.069	5.3787
9	2.457	5059770	1092533	VV	0.071	5.4199
10	2.694	1654210	381510	VV	0.066	1.7720
11	2.808	6523043	1137164	VV	0.088	6.9873
12	2.965	5638056	845333	VV	0.101	6.0394
13	3.162	6692393	953578	VV	0.108	7.1687
14	3.480	5403894	836678	VV	0.100	5.7885
15	4.515	5880433	761567	VV	0.120	6.2990
16	6.366	8796	1208	BB	0.100	0.0094
17	7.817	5464875	1014852	BV	0.083	5.8538
18	7.942	6481551	1077608	VV	0.091	6.9429
19	9.490	6166922	1142360	PV	0.084	6.6059
20	10.005	11800	1783	VV	0.094	0.0126
21	10.120	5104	1194	VV	0.067	0.0055
22	10.235	2816	577	VV	0.070	0.0030
23	11.091	975522	199767	BV	0.075	1.0450
24	11.411	6077651	1285035	VV	0.073	6.5102
25	11.901	1731	459	VB	0.053	0.0019
26	12.215	95308	17401	V.V	0.083	0.1021
27	14.321	1930288	399308	BBA	0.073	2.0677

Total area = 9.33553E+007

Acquired on Report Created on: 22 Jul 94 Sample Info

Operator

: 22 Jul 94 09:23 AM 09:39 AM : 0721Q1 CUS 20 PPM STD.


Instrument Method: SG-1.MTH Analysis Method : SG-1.MTH Data File Name : C:\HPCHEM\1\DATA\0722PM12.D

Operator : JAY BERGER Page Number : 2
Instrument : INSTRUMEN Vial Number :
Sample Name : MID STD. 1 Injection Number :
Run Time Bar Code: Sequence Line :

Acquired on : 22 Jul 94 09:23 AM Instrument Method: SG-1.MTH Report Created on: 22 Jul 94 09:39 AM Analysis Method : SG-1.MTH

Sig. 2 in C:\HPCHEM\1\DATA\0722PM12.D

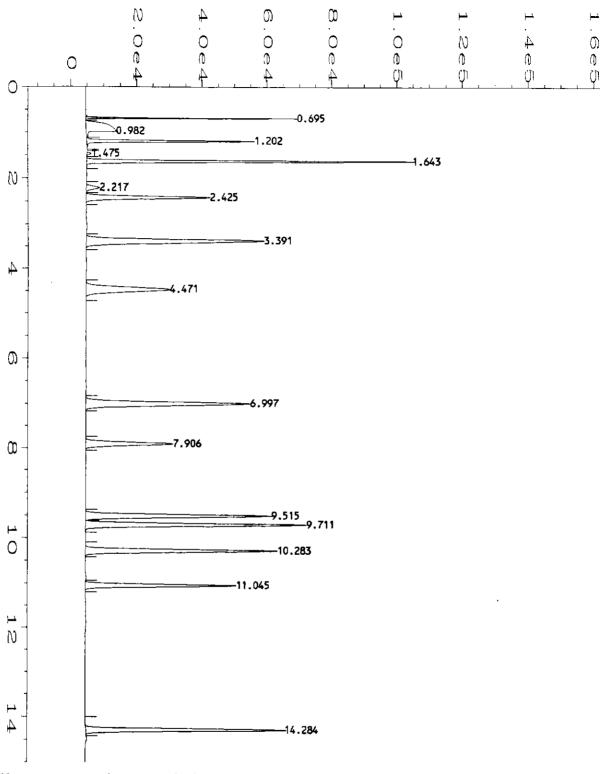
Pk#	Ret Time	Area	Height	Type	Width	Area %
1	0.698	27998	29386	VV	0.015	2.1582
2	0.992	102936	9211	PV	0.134	7.9349
3	1.208	54292	21929	VV	0.039	4.1852
4	1.651	116749	42926	VB	0.043	8.9997
5	2.230	15226	3424	BV	0.069	1.1737
6	2.440	65431	15987	VB	0.064	5.0438
7	3.412	132494	23021	BB	0.089	10.2134
8	4.496	77041	10800	BB	0.112	5.9387
9	7.019	123253	21372	BB	0.091	9.5010
10	7.924	59721	11251	BB	0.084	4.6037
11	9.531	109882	23971	BV	0.072	8.4703
12	9.727	128194	28712	VB	0.070	9.8820
13	10.298	109195	24860	BB	0.069	8.4174
14	11.062	77837	19369	BB	0.063	6.0002
15	14.298	97008	25518	BV	0.060	7.4779

Data File Name : C:\HPCHEM\1\DATA\0722HH12.D Operator : JAY BERGER Page Number : 1 Instrument : INSTRUMEN Vial Number Sample Name : HIGH STD. 1 Injection Number: Run Time Bar Code: Sequence Line

Acquired on : 22 Jul 94 09:04 AM Report Created on: 22 Jul 94 09:19 AM Sample Info : 0721Q2 CUS 50 PPM STD. Instrument Method: SG-1.MTH

Analysis Method : SG-1.MTH

Data File Name : C:\HPCHEM\1\DATA\0722HH12.D


Operator : JAY BERGER Page Number : 2
Instrument : INSTRUMEN Vial Number :
Sample Name : HIGH STD. 1 Injection Number :
Run Time Bar Code: Sequence Line :

Acquired on : 22 Jul 94 09:04 AM Instrument Method: SG-1.MTH Report Created on: 22 Jul 94 09:19 AM Analysis Method : SG-1.MTH

Sig. 1 in C:\HPCHEM\1\DATA\0722HH12.D

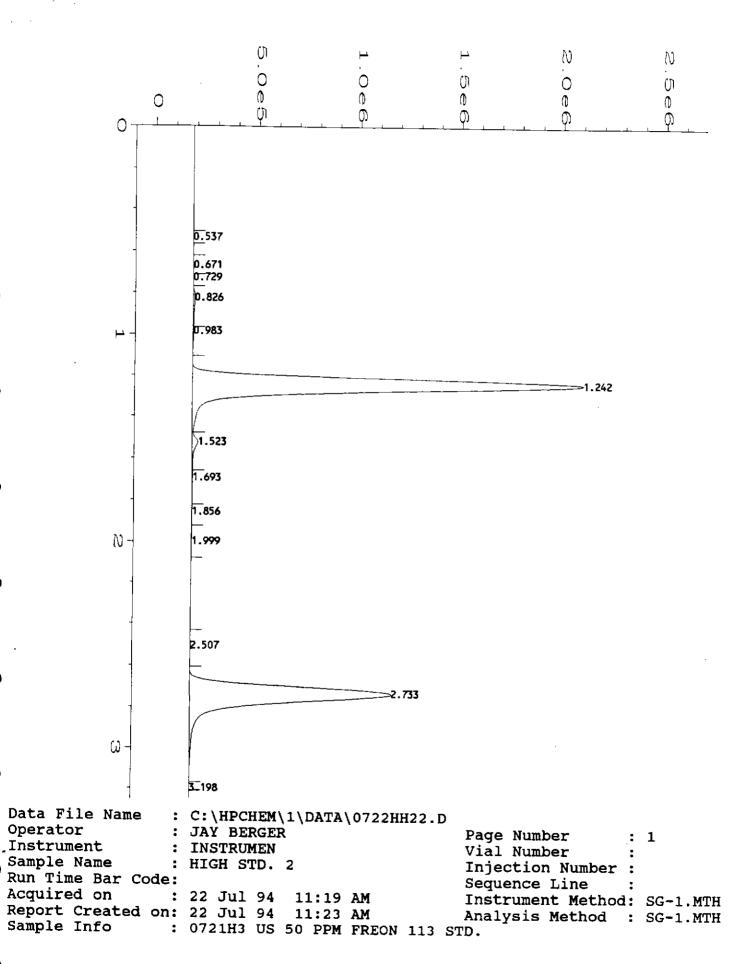
_	Pk#	Ret Time	Area	Height	Туре	Width	Area %
	1	0.525	2288	1627	PV	0.021	0.0011
	2	0.591	3401045	2076026	PV	0.025	1.6004
	3	0.708	6292684	3571208	VV	0.026	2.9610
	4	0.866	4473223	2262933	VV	0.030	2.1049
	5	0.964	6694873	2273967	VV	0.044	3.1503
	6	1.217	1.01976E+007	3278920	VV	0.048	4.7985
	7	1.490	1.22825E+007	3955831	VV	0.048	5.7796
	8	1.658	1.10226E+007	3254090	VV	0.052	5.1867
	9	1.949	1.15055E+007	2562665	VV	0.069	5.4140
	10	2.442	1.15241E+007	2507366	VV	0.071	5.4227
	11	2.677	3868760	902351	VV	0.065	1.8205
	12	2.791	1.48919E+007	2605508	VV	0.088	7.0074
	13	2.947	1.29593E+007	1950205	VV	0.102	6.0981
	14	3.143	1.52453E+007	2163528	VV	0.109	7.1738
	15	3.460	1.22576E+007	1933530	VV	0.098	5.7679
	16	4.488	1.33437E+007	1733653	VV	0.121	6.2789
	17	6.351	19177	2989	VV	0.090	0.0090
	18	7.796	1.2624E+007	2329299	BV	0.083	5.9403
	19	7.922	1.47469E+007	2440753	VV	0.092	6.9392
	20	9.472	1.41012E+007	2574817	VV	0.085	6.6354
	21	10.477	208	168	VV	0.025	0.0001
	22	11.073	2343141	475759	BV	0.075	1.1026
	23	11.395	1.3925E+007	2877827	VV	0.075	6.5525
	24	12.201	220763	40557	VV	0.083	0.1039
	25	13.583	5874	971	BV	0.080	0.0028
	26	14.305	4566255	957342	BV	0.073	2.1487

Total area = 2.12515E+008

Data File Name : C:\HPCHEM\1\DATA\0722PH12.D Operator : JAY BERGER Page Number : 1 Instrument : INSTRUMEN Vial Number Sample Name : HIGH STD. 1 Injection Number: Run Time Bar Code: Sequence Line Acquired on : 22 Jul 94 Instrument Method: SG-1.MTH 09:04 AM

Analysis Method : SG-1.MTH

Report Created on: 22 Jul 94 09:19 AM Sample Info : 0721Q2 CUS 50 PPM STD.


Data File Name : C:\HPCHEM\1\DATA\0722PH12.D

Operator : JAY BERGER Page Number : 2
Instrument : INSTRUMEN Vial Number :
Sample Name : HIGH STD. 1 Injection Number :
Run Time Bar Code: Sequence Line :

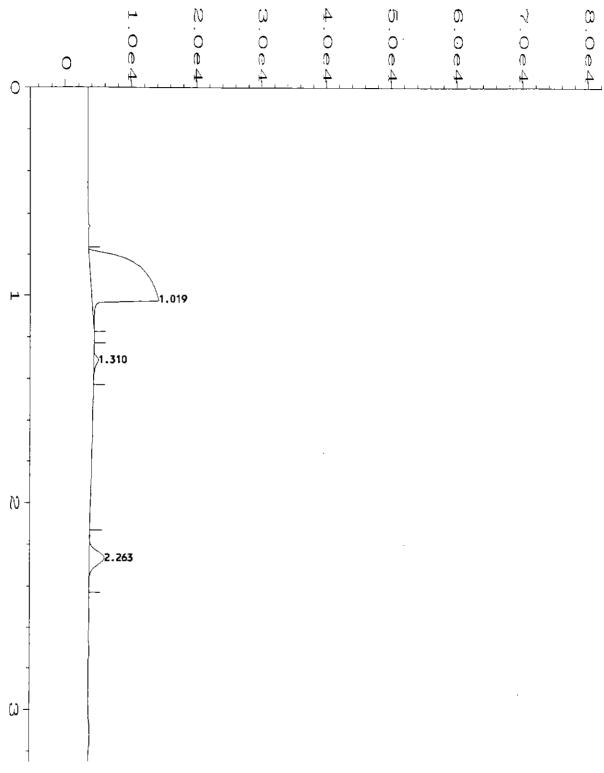
Acquired on : 22 Jul 94 09:04 AM Instrument Method: SG-1.MTH Report Created on: 22 Jul 94 09:19 AM Analysis Method : SG-1.MTH

Sig. 2 in C:\HPCHEM\1\DATA\0722PH12.D

y			1/1/DATA/U/22PH1	.Z.D			
	Pk#	Ret Time	Area	Height	Type	Width	Area %
	1	0.695	63093	67211	'vv '	0.015	2.1726
	2	0.982	100086	9141	PV	0.133	3.4464
	3	1.202	127698	51664	VB	0.039	4.3972
	4	1.475	3240	1279	BV	0.040	0.1116
	5	1.643	272321	101324	VB	0.042	9.3772
	6	2.217	17824	4011	BV	0.069	0.6138
	7	2.425	153551	37964	VV	0.063	5.2874
	8	3.391	311516	54635	BB	0.089	10.7268
	9	4.471	181330	25611	BB	0.111	6.2440
	10	6.997	290512	50388	BB	0.091	10.0036
	11	7.906	141464	26692	BB	0.083	4.8712
	12	9.515	261719	57441	BV	0.072	9.0121
	13	9.711	304242	67882	VB	0.070	10.4764
	14	10.283	258202	58913	BB	0.069	8.8910
	15	11.045	184895	46168	VB	0.062	6.3667
	16	14.284	232387	61621	BV	0.059	8.0021

Data File Name : C:\HPCHEM\1\DATA\0722HH22.D

Operator : JAY BERGER Page Number : 2
Instrument : INSTRUMEN Vial Number :
Sample Name : HIGH STD. 2 Injection Number :
Run Time Bar Code: Sequence Line :


Acquired on : 22 Jul 94 11:19 AM Report Created on: 22 Jul 94 11:23 AM

Instrument Method: SG-1.MTH Analysis Method : SG-1.MTH

Sig. 1 in C:\HPCHEM\1\DATA\0722HH22.D

7			1/1/DATA/0/22HH2				
	Pk#	Ret Time	Area	Height	Type	Width	Area %
	1	0.537	766	739	ˈbv ˈ	0.017	0.0056
	2	0.671	5315	1840	VV	0.039	0.0389
	3	0.729	2512	880	VV	0.048	0.0184
	4	0.826	65875	8682	VV	0.103	0.4819
	5	0.983	16720	3892	VV	0.054	0.1223
	6	1.242	8224972	1923874	PV	0.066	60.1692
	7	1.523	117114	28157	VV	0.060	0.8567
	8	1.693	25965	4090	VV	0.085	0.1899
	9	1.856	7024	1403	VV	0.070	0.0514
	10	1.999	8988	1420	VV	0.079	0.0658
	11	2.507	6450	1194	VV	0.069	0.0472
	12	2.733	5187785	98866 9	PV	0.079	37.9509
	13	3.198	250	104	VV	0.040	0.0018

Total area = 1.36697E+007

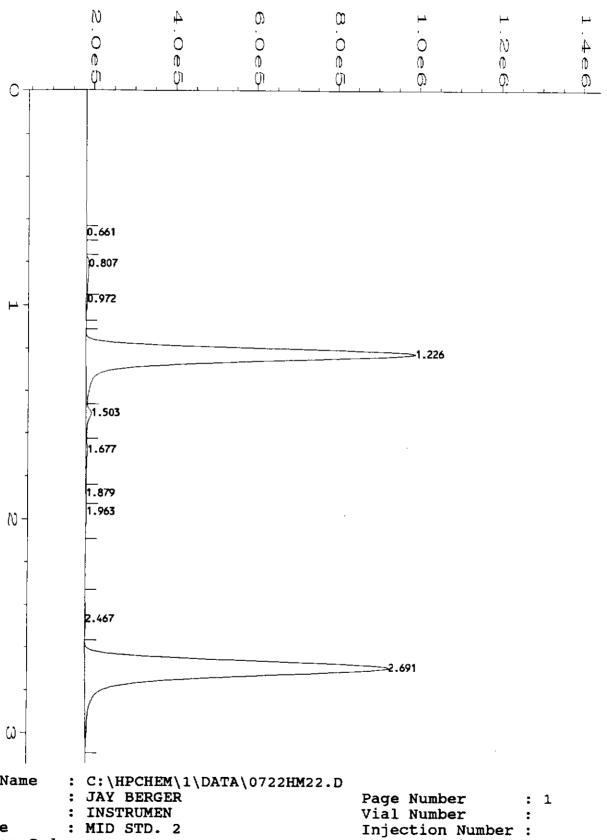
Data File Name : C:\HPCHEM\1\DATA\0722PH22.D

Operator : JAY BERGER Page Number : 1

Instrument : INSTRUMEN Vial Number :
Sample Name : HIGH STD. 2 Injection Number :
Run Time Bar Code: Sequence Line :

Acquired on : 22 Jul 94 11:19 AM Instrument Method: SG-1.MTH Report Created on: 22 Jul 94 11:23 AM Analysis Method : SG-1.MTH

Sample Info : 0721H3 US 50 PPM FREON 113 STD.


Data File Name : C:\HPCHEM\1\DATA\0722PH22.D

Operator : JAY BERGER Page Number : 2
Instrument : INSTRUMEN Vial Number :
Sample Name : HIGH STD. 2 Injection Number :
Run Time Bar Code: Sequence Line :

Acquired on : 22 Jul 94 11:19 AM Instrument Method: SG-1.MTH Report Created on: 22 Jul 94 11:23 AM Analysis Method : SG-1.MTH

Sig. 2 in C:\HPCHEM\1\DATA\0722PH22.D

Pk#	•	Area	Height	Туре	Width	Area %	
1	1.019	121671	10131	BB	0.148	90.7040	
2	1.310	2101	714	BB	0.045	1.5660	
3	2.263	10369	2283	BB	0.071	7.7300	

Data File Name : C:\HPCHEM\1\DATA\0722HM22.D

Operator : JAY BERGER Page Number : 1

Instrument : INSTRUMEN Vial Number :

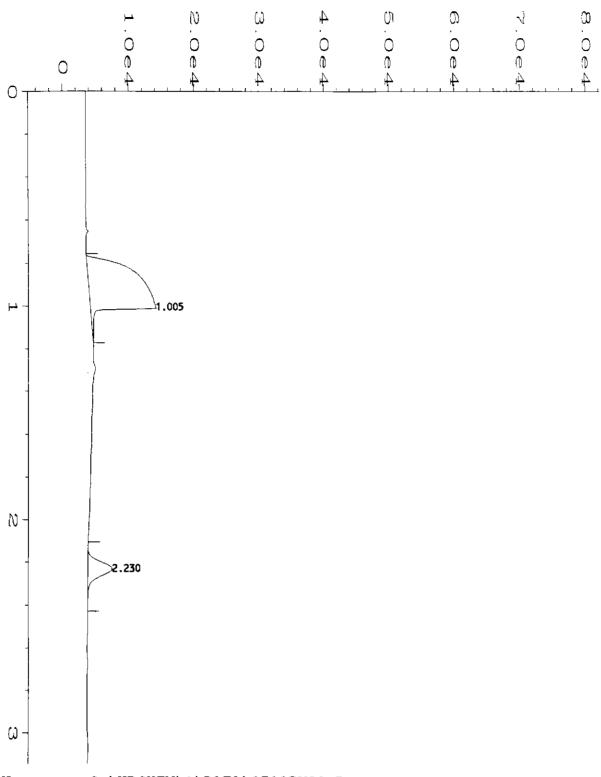
Sample Name : MID STD. 2 Injection Number :

Run Time Bar Code: Sequence Line :

Acquired on : 22 Jul 94 11:24 AM Instrument Method: SG-1.MTH

Report Created on: 22 Jul 94 11:27 AM Analysis Method : SG-1.MTH

Sample Info : 0721M3 US 20 PPM FREON 113 STD.


Data File Name : C:\HPCHEM\1\DATA\0722HM22.D

Operator : JAY BERGER Page Number : 2
Instrument : INSTRUMEN Vial Number :
Sample Name : MID STD. 2 Injection Number :
Run Time Bar Code: Sequence Line :

Acquired on : 22 Jul 94 11:24 AM Instrument Method: SG-1.MTH Report Created on: 22 Jul 94 11:27 AM Analysis Method : SG-1.MTH

Sig. 1 in C:\HPCHEM\1\DATA\0722HM22.D

9.		in C. Inschei	1	42.D			
	Pk#	Ret Time	Area	Height	Type	Width	Area %
i							
•	1	0.661	2082	1372	PV	0.023	0.0279
	2	0.807	43046	5921	VV	0.098	0.5771
	3	0.972	11357	2959	VV	0.054	0.1523
	4	1.226	3440256	810719	PV	0.065	46.1238
	5	1.503	55194	13104	VV	0.061	0.7400
	6	1.677	26903	3405	VV	0.107	0.3607
	7	1.879	6867	1460	VV	0.062	0.0921
	8	1.963	7632	1456	VV	0.069	0.1023
	9	2.467	9090	1513	BV	0.077	0.1219
	10	2.691	3856316	748128	PV	0.079	51.7020

Data File Name : C:\HPCHEM\1\DATA\0722PM22.D

Operator : JAY BERGER Page Number : 1

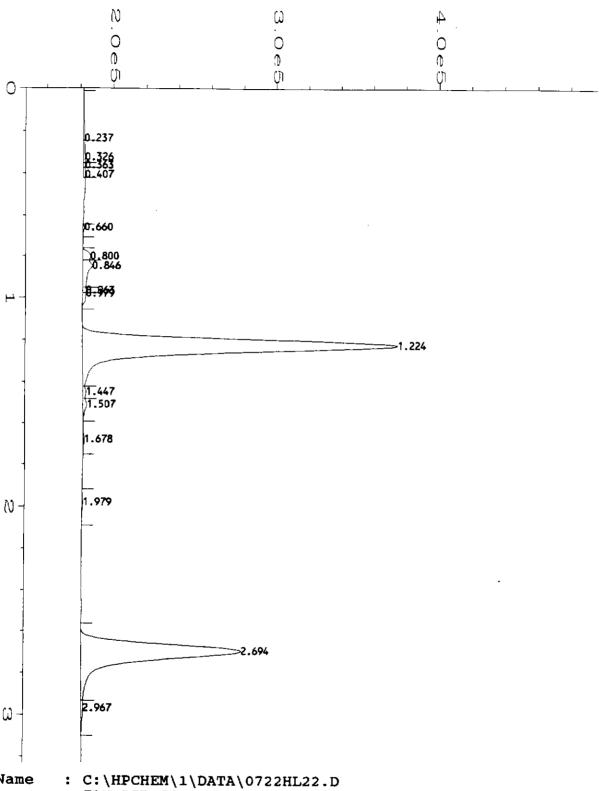
Instrument : INSTRUMEN Vial Number :

Sample Name : MID STD. 2 Injection Number :

Run Time Bar Code: Sequence Line :

Acquired on : 22 Jul 94 11:24 AM Instrument Method: SG-1.MTH Report Created on: 22 Jul 94 11:28 AM Analysis Method : SG-1.MTH

Sample Info : 0721M3 US 20 PPM FREON 113 STD.


Data File Name : C:\HPCHEM\1\DATA\0722PM22.D

: JAY BERGER Operator Page Number Instrument : INSTRUMEN Vial Number Sample Name : MID STD. 2 Injection Number: Run Time Bar Code: Sequence Line :

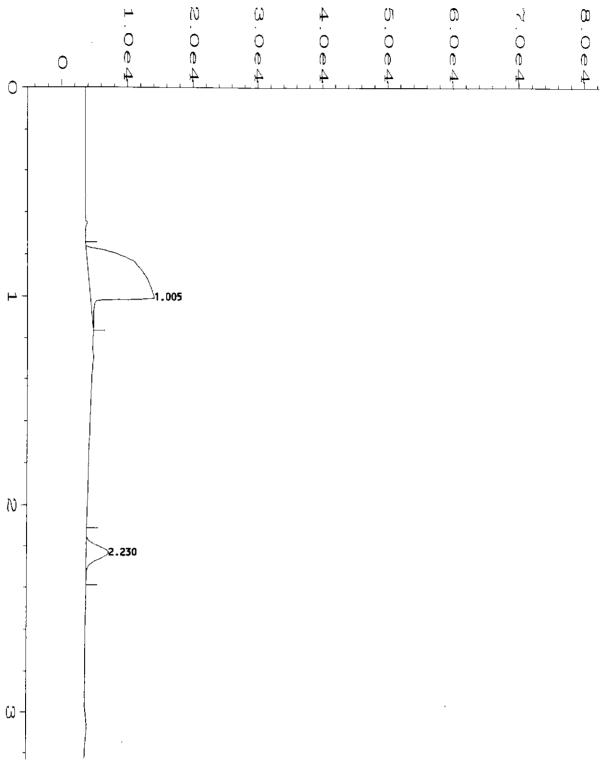
Acquired on : 22 Jul 94 11:24 AM Instrument Method: SG-1.MTH Report Created on: 22 Jul 94 11:28 AM Analysis Method : SG-1.MTH

Sig. 2 in C:\HPCHEM\1\DATA\0722PM22.D

Pk#	Ret Time	Area	Height	Type	Width	Area %
1	1.005	117927	9936	BB	0.144	87.4872
2	2.230	16867	3675	BB	0.070	12.5128

Data File Name Operator : JAY BERGER Page Number : 1 Instrument : INSTRUMEN Vial Number Sample Name : LOW STD. 2 Injection Number: Run Time Bar Code: Sequence Line Acquired on : 22 Jul 94 11:29 AM Instrument Method: SG-1.MTH Report Created on: 22 Jul 94 11:32 AM Analysis Method : SG-1.MTH Sample Info : 0721L3 US 5 PPM FREON 113 STD.

Data File Name : C:\HPCHEM\1\DATA\0722HL22.D


Operator : JAY BERGER
Instrument : INSTRUMEN
Sample Name : LOW STD. 2 Page Number : 2 Vial Number Injection Number: Run Time Bar Code:

Sequence Line : Acquired on : 22 Jul 94 11:29 AM

Instrument Method: SG-1.MTH Report Created on: 22 Jul 94 11:32 AM Analysis Method : SG-1.MTH

Sig. 1 in C:\HPCHEM\1\DATA\0722HL22.D

9		III C:/HPCHE	1/1/DATA/0/22HP5	(Z.D			
	Pk#	Ret Time	Area	Height	Type	Width	Area %
	11						
	1	0.237	6274	829	BV	0.095	0.4391
	2	0.326	6091	1140	VV	0.068	0.4262
	3	0.363	1441	1131	VV	0.021	0.1008
	4	0.407	3458	1275	VV	0.041	0.2420
	5	0.660	1574	985	VV	0.024	0.1102
	6	0.800	12012	4667	PV	0.041	0.8406
	7	0.846	27387	5956	VV	0.060	1.9166
	8	0.963	3416	2297	VV	0.025	0.2390
	9	0.979	6014	2175	VV	0.046	0.4209
	10	1.224	823818	194114	PV	0.066	57.6515
	11	1.447	5997	2028	VV	0.042	0.4197
	12	1.507	8869	2529	VV	0.051	0.6207
	13	1.678	3977	776	VV	0.072	0.2783
	14	1.979	2451	613	BV	0.055	0.1716
	15	2.694	509969	97934	PV	0.079	35.6881
	16	2.967	6212	1064	VV	0.097	0.4347

Data File Name : C:\HPCHEM\1\DATA\0722PL22.D Operator JAY BERGER Page Number : 1 - Instrument : INSTRUMEN Vial Number Sample Name : LOW STD. 2 Injection Number: Run Time Bar Code: Sequence Line Acquired on : 22 Jul 94 11:29 AM

Acquired on : 22 Jul 94 11:29 AM Instrument Method: SG-1.MTH Report Created on: 22 Jul 94 11:33 AM Analysis Method : SG-1.MTH

Sample Info : 0721L3 US 5 PPM FREON 113 STD.

Data File Name : C:\HPCHEM\1\DATA\0722PL22.D

Operator : JAY BERGER Page Number : 2
Instrument : INSTRUMEN Vial Number :
Sample Name : LOW STD. 2 Injection Number :
Run Time Bar Code: Sequence Line :

Acquired on : 22 Jul 94 11:29 AM Report Created on: 22 Jul 94 11:33 AM

Instrument Method: SG-1.MTH Analysis Method : SG-1.MTH

Sig. 2 in C:\HPCHEM\1\DATA\0722PL22.D

,	Pk#	Ret Time	Area	Height	Туре	Width	Area %
	1	1.005	116810	9688	BB	0.146	88.5100
	2	2.230	15164	3391	BB	0.069	11.4900

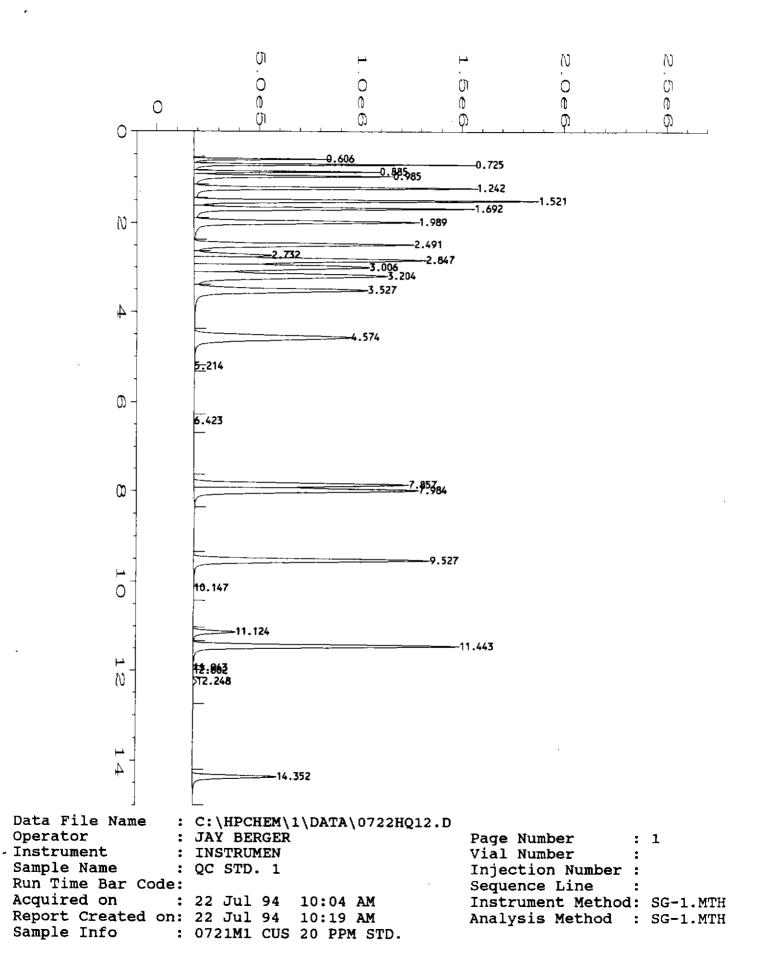
SOIL GAS LABORATORY CONTROL STANDARD

SITE NAME: Aerovironment

LAB NAME: AeroVironment Inc.

DATE: 07/22/94

ANALYST: Jay Berger

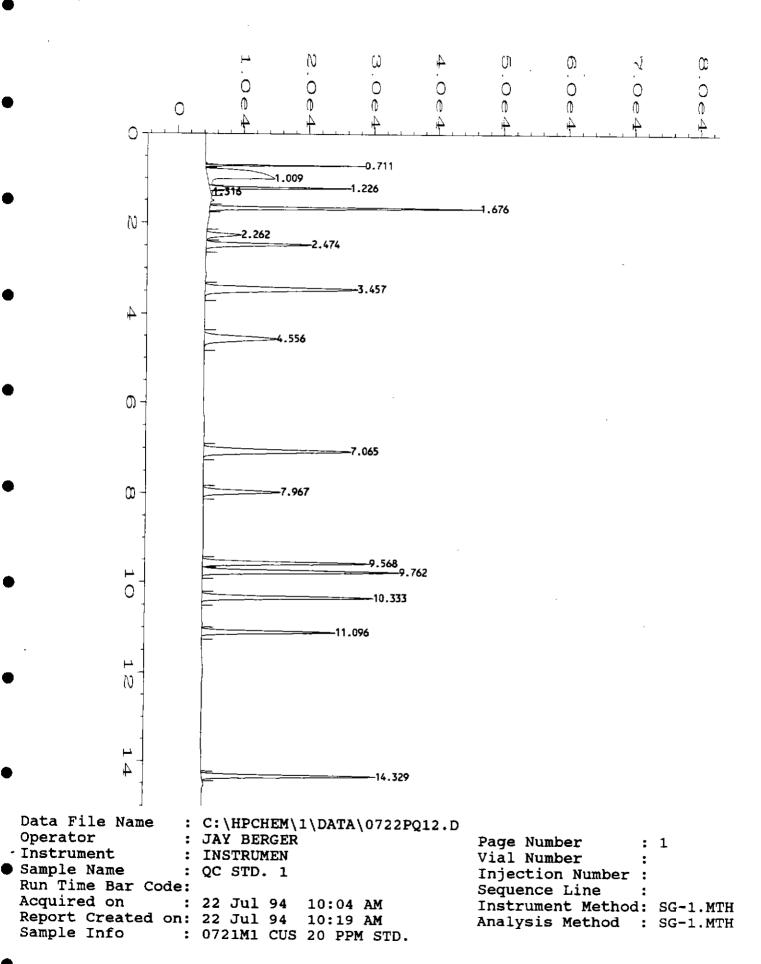

STD LOT ID NO. CUS-881/ H 0377&HC-480/G-1065

INSTRUMENT ID: GC2/PID/ELCD

NORMAL INJECTION VOLUME: 0.50 UL

			MASS				
COMPOUND	DETEC.	RT	ng	AREA	CF	%DIFF	ACC RGE
Dichlorodifluoromethane	ELCD	0.61	10	1192548	119255	-13.88	<15.00
Vinyl chloride	ELCD	0.73	10	2616284	261628	-3.59	<15.00
Chloroethane	ELCD	0.89	10	1909559	190956	-2.28	<15.00
Trichlorofluoromethane	ELCD	0.99	10	2978800	297880	2.44	<15.00
1,1,2-Trichloro-trifluoroethane	ELCD	1.23	10	3683177	368318	10.21	<15.00
1,1-Dichloroethene (1,1-DCE)	ELCD	1.24	10	4612038	461204	4.00	<15.00
Dichloromethane (Methylene chloride)	ELCD	1.52	10	5527919	552792	3.68	<15.00
trans-1,2-Dichloroethene(t-1,2-DCE)	ELCD	1.69	10	4998700	499870	2.82	<15.00
1,1-Dichloroethane (1,1-DCA)	ELCD	1.99	10	5242095	524210	4.86	<15.00
cis-1,2-Dichloroethene (c-1,2-DCE)	ELCD	2.49	10	5226911	522691	4.15	<15.00
Chloroform	ELCD	2.85	10	6751421	675142	4.71	<15.00
1,1,1-Trichloroethane (1,1,1-TCA)	ELCD	3.01	10	5871421	587142	4.89	<15.00
Carbon tetrachloride	ELCD	3.20	10	6876854	687685	4.04	<15.00
Benzene	PID	3.46	10	138272	13827	4.79	<15.00
1,2-Dichloroethane (1,2-DCA)	ELCD	3.53	10	5722286	572229	6.65	<15.00
Trichloroethene (TCE)	ELCD	4.57	10	6089295	608930	4.76	<15.00
Toluene	PID	7.07	10	129122	12912	5.13	<15.00
1,1,2-Trichloroethane (1,1,2-TCA)	ELCD	7.86	10	5666994	566699	5.28	<15.00
Tetrachloroethene (PCE)	ELCD	7.98	10	6608803	660880	3.17	<15.00
1,1,1,2-Tetrachloroethane	ELCD	9.53	10	6322547	632255	4.11	<15.00
Ethylbenzene	PID	9.57	10	115564	11556	5.31	<15.00
m&p-Xylene	PID	9.76	10	134903	13490	5.48	<15.00
o-Xylene	PID	10.33	10	114282	11428	4.75	<15.00
1,1,2,2-Tetrachloroethane	ELCD	11.44	10	6259345	625935	3.89	<15.00

		•
		•
		•
		•
		•
		•
		•
		•
		•
		•

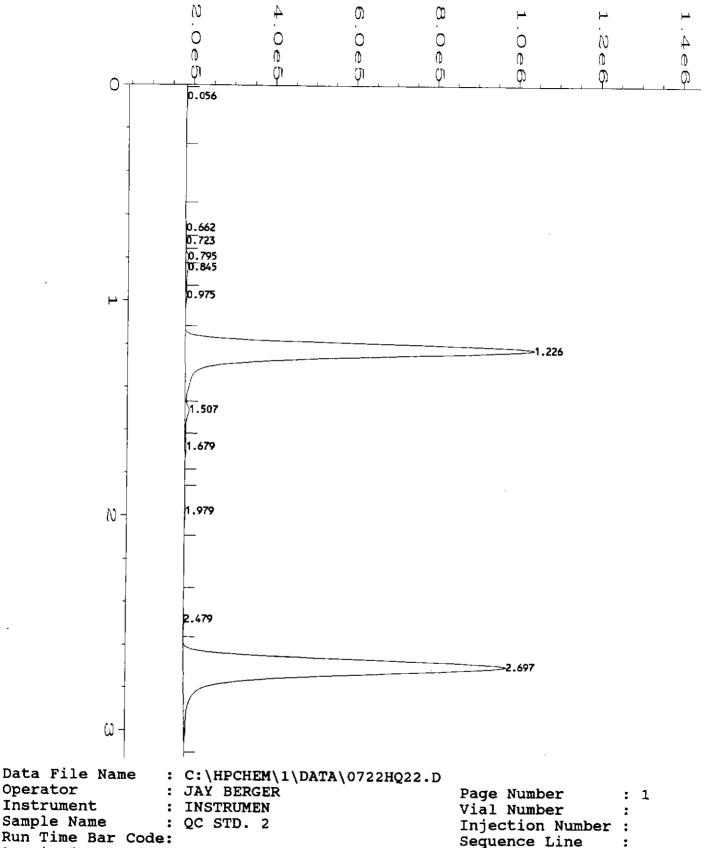

Data File Name : C:\HPCHEM\1\DATA\0722HQ12.D
Operator : JAY BERGER
Instrument : INSTRUMEN
Sample Name : QC STD. 1 Page Number : 2 Vial Number Injection Number : Run Time Bar Code: Sequence Line :

Acquired on : 22 Jul 94 10:04 AM Instrument Method: SG-1.MTH Report Created on: 22 Jul 94 10:19 AM Analysis Method : SG-1.MTH

Sig. 1 in C:\HPCHEM\1\DATA\0722H012.D

Pk#	Ret Time	Area Area	Height	Type	Width	Area %
1	0.606	1192548	670204	PV	0.027	1.2509
2	0.725	2616284	1403884	vv	0.028	2.7443
3	0.885	1909559	918483	VV	0.032	2.0030
4	0.985	2978800	984027	VV	0.046	3.1245
5	1.242	4612038	1402512	VV	0.050	4.8377
6	1.521	5527919	1701430	VV	0.050	5.7984
7	1.692	4998700	1386171	VV	0.055	5.2432
8	1.989	5242095	1108650	VV	0.072	5.4985
9	2.491	5226911	1082960	VV	0.075	5.4826
10	2.732	1684158	379967	VV	0.068	1.7666
11	2.847	6750886	1141809	VV	0.091	7.0812
12	3.006	5871421	862353	VV	0.104	6.1587
13	3.204	6876854	950077	VV	0.113	7.2133
14	3.527	5722286	852895	VV	0.103	6.0022
15	4.574	6089295	770112	VV	0.123	6.3872
16	5.214	3531	831	VV	0.059	0.0037
17	6.423	6445	1118	BB	0.086	0.0068
18	7.857	5666994	1055002	BV	0.083	5.9442
19	7.984	6608803	1106097	VV	0.091	6.9321
20	9.527	6322547	1164317	PV	0.084	6.6319
21	10.147	14292	1498	VV	0.121	0.0150
22	11.124	1011614	205638	ΡV	0.075	1.0611
23	11.443	6259345	1313513	VV	0.074	6.5656
24	11.943	11846	2481	VV	0.064	0.0124
25	12.002	20338	2329	VV	0.110	0.0213
26	12.248	112752	18681	VB	0.089	0.1183
27	14.352	1997708	412859	PBA	0.073	2.0954

Total area = 9.5336E+007


Data File Name : C:\HPCHEM\1\DATA\0722PQ12.D

Operator : JAY BERGER Page Number : 2
Instrument : INSTRUMEN Vial Number :
Sample Name : QC STD. 1 Injection Number :
Run Time Bar Code: Sequence Line :

Acquired on : 22 Jul 94 10:04 AM Instrument Method: SG-1.MTH Report Created on: 22 Jul 94 10:19 AM Analysis Method : SG-1.MTH

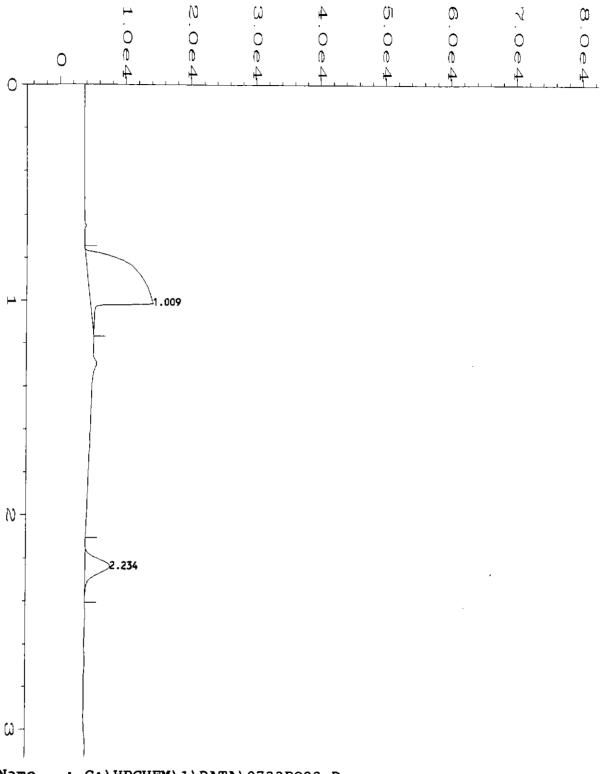
Sig. 2 in C:\HPCHEM\1\DATA\0722PQ12.D

g. 2 in C:\HPCHEM\I\DATA\U/22PQI2.D							
	Pk#	Ret Time	Area	Height	Type	Width	Area %
	1	0.711	25806	25002	'vv	0.016	1.8784
	2	1.009	118651	10163	PV	0.141	8.6362
	3	1.226	57112	21746	VV	0.041	4.1570
	4	1.316	1294	329	VB	0.049	0.0941
	5	1.676	119249	42043	PV	0.044	8.6798
	6	2.262	24343	5269	BV	0.071	1.7718
	7	2.474	68266	16102	VB	0.066	4.9688
	8	3.457	138272	23411	BB	0.091	10.0644
	9	4.556	80808	11069	BB	0.114	5.8817
	10	7.065	129122	22547	BB	0.090	9.3983
	11	7.967	62865	11786	BB	0.084	4.5757
	12	9.568	115564	25585	BV	0.071	8.4115
	13	9.762	134903	30226	VB	0.070	9.8191
	14	10.333	114282	26228	BB	0.069	8.3182
	15	11.096	81865	20437	VB	0.063	5.9587
	16	14.329	101477	26695	BV	0.060	7.3862

Sample Name Run Time Bar Code: Sequence Line Acquired on : 22 Jul 94 11:34 AM Instrument Method: SG-1.MTH Report Created on: 22 Jul 94 11:37 AM Analysis Method : SG-1.MTH Sample Info : 0721Q4 US 20 PPM FREON 113 STD.

Operator

Data File Name : C:\HPCHEM\1\DATA\0722HQ22.D


Operator : JAY BERGER Page Number : Instrument : INSTRUMEN Vial Number : Sample Name : QC STD. 2 Injection Number :

Run Time Bar Code: Sequence Line :

Acquired on : 22 Jul 94 11:34 AM Instrument Method: SG-1.MTH Report Created on: 22 Jul 94 11:37 AM Analysis Method : SG-1.MTH

Sig. 1 in C:\HPCHEM\1\DATA\0722HQ22.D

9. I .	IN C: (HPCHER	1\1\DATA\0/22HQ2	(2.D			
Pk#	Ret Time	Area	Height	Туре	Width	Area %
1	0.056	6083	1409	ˈBV ˈ	0.057	0.0764
2	0.662	6978	1902	PV	0.049	0.0877
3	0.723	3590	1190	VV	0.040	0.0451
4	0.795	18237	6405	VV	0.044	0.2291
5	0.845	27370	6448	VV	0.055	0.3438
6	0.975	16541	3370	VV	0.068	0.2078
7	1.226	3683177	859574	PV	0.066	46.2640
8	1.507	42573	9928	VV	0.062	0.5348
9	1.679	14846	2979	VV	0.068	0,1865
10	1.979	12977	2301	BV	0.071	0.1630
11	2.479	8741	1735	BV	0.070	0.1098
12	2.697	4120097	79393 7	PV	0.080	51.7522

Data File Name : C:\HPCHEM\1\DATA\0722PQ22.D Operator : JAY BERGER Page Number : 1 Instrument : INSTRUMEN Vial Number Sample Name : QC STD. 2 Injection Number: Run Time Bar Code: Sequence Line Acquired on : 22 Jul 94 11:34 AM Instrument Method: SG-1.MTH Report Created on: 22 Jul 94 11:37 AM Analysis Method : SG-1.MTH

Sample Info : 0721Q4 US 20 PPM FREON 113 STD. Data File Name : C:\HPCHEM\1\DATA\0722PQ22.D

Operator : JAY BERGER Page Number : 2
Instrument : INSTRUMEN Vial Number :
Sample Name : QC STD. 2 Injection Number :
Run Time Bar Code: Sequence Line :

Acquired on : 22 Jul 94 11:34 AM Instrument Method: SG-1.MTH Report Created on: 22 Jul 94 11:37 AM Analysis Method : SG-1.MTH

Sig. 2 in C:\HPCHEM\1\DATA\0722PQ22.D

Pk#	Ret Time	Area	Height	Туре	Width	Area %	l
1	1.009	116431	9524	BB	0.147	86.9176	
2	2.234	17525	3761	BB	0.073	13.0824	

Appendix E

SOIL VAPOR SAMPLE DATA WORKSHEETS AND CHROMATOGRAMS

Data Worksheet GC/PID/ELCD Sample ID: Eq. Blank 1 Control #: LABQC

Project name: Geosystems
Sample date: 08/18/94
Project#: 300677
File name: 0818B12
Location: No. Hollywood
Analysis: 8010/8020
Analyst: Jay Berger

Analysis: 8010/8020 Analyst: Jay Berger Sampled by: NC Lab ID: Truck 1

GC ID: GC2 PID/ELCD Sample type: EB1 Sample time: 09:52

Received time: 09:55 18Th, Injection time: 10:03 18Th, Probe depth: NA Feet

Probe depth: NA Feet
Purge volume: NA CC
Sample flow: NA CC/min
Vacuum: NA "H2O
Syringe: 15 Plastic 1cc

Dilution Factor: 1

Calibration date: 07/22/94

Injection volum 0.5

mL

Calib std: no					
	Standard		Sample		
Compound	RT	Avg. CF	RT .	Area	ug/L
Dichlorodiffuoromethane	0.59	138477		0	0.00
Vinyl chloride	0.71	271379		0	0.00
Chloroethane	0.87	195402		0	0.00
Trichlorofluoromethane	0.97	290771		0	0.00
1,1,2-Trichloro-triffuoroethane	1.23	334184		0	0.00
1,1-Dichloroethene (1,1-DCE)	1.22	443468		0	0.00
Dichloromethane (Methylene chloride)	1.50	533175		0	0.00
trans-1,2-Dichloroethene(t-1,2-DCE)	1.67	486172		0	0.00
1,1-Dichloroethane (1,1-DCA)	1.96	499909		0	0.00
cis-1,2-Dichloroethene (c-1,2-DCE)	2.46	501846		0	0.00
Chloroform	2.81	644803		0	0.00
1,1,1-Trichloroethane (1,1,1-TCA)	2.97	559745		0	0.00
Carbon tetrachloride	3.16	660954		0	0.00
Benzene	3.41	13196		0	0.00
1,2-Dichloroethane (1,2-DCA)	3.48	5 36556		0	0.00
Trichloroethene (TCE)	4.52	581271		0	0.00
Toluene	7.02	12282		0	0.00
1,1,2-Trichloroethane (1,1,2-TCA)	7.82	5 38285		0	0.00
Tetrachloroethene (PCE)	7.94	640559		0	0.00
1,1,1,2-Tetrachloroethane	9.49	607279		0	0.00
Ethylbenzene	9.53	10974		O	0.00
m&p-Xylene	9.73	12790		0	0.00
o-Xylene	10.30	10909	•	0	0.00
1,1,2,2-Tetrachloroethane	11,41	602475		0	0.00

Total peaks of PID: 0
Total peaks of ELCD: 0
Unidentified peaks: 0

Notes:

^{1-&}quot;Standard RT" is the retention time for the standard.

^{2-&}quot;Standard AVE, CF" is the average calibration factor for this instrument.

^{3-&}quot;Sample area" is the area under the peak.

^{4-&}quot;Sample ug/L" is the concentration of the analyte in the sample

Analysis Results GC/PID/ELCD

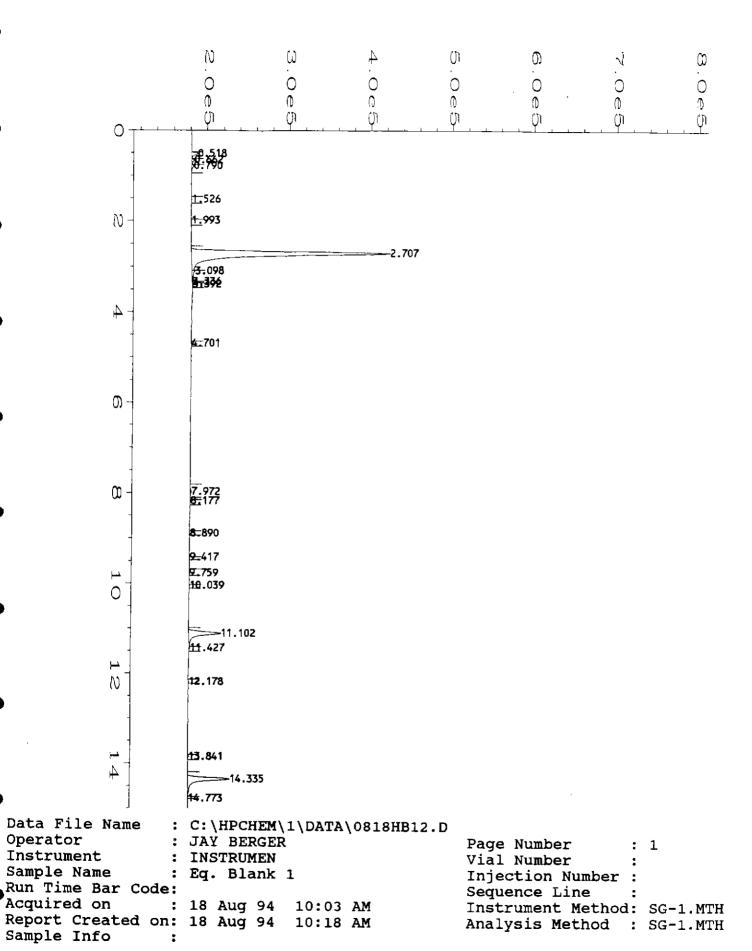
Sample ID: Eq. Blank 1 Control #: LABQC

Sample date: 08/18/94

Project#: 300677 Location: No. Hollywood Analysis: 8010/8020

Sampled by: NC Sample time: 09:52 Probe depth: NA

Dilution Factor: 1 Sample type: EB1 Injection volume: 0,50

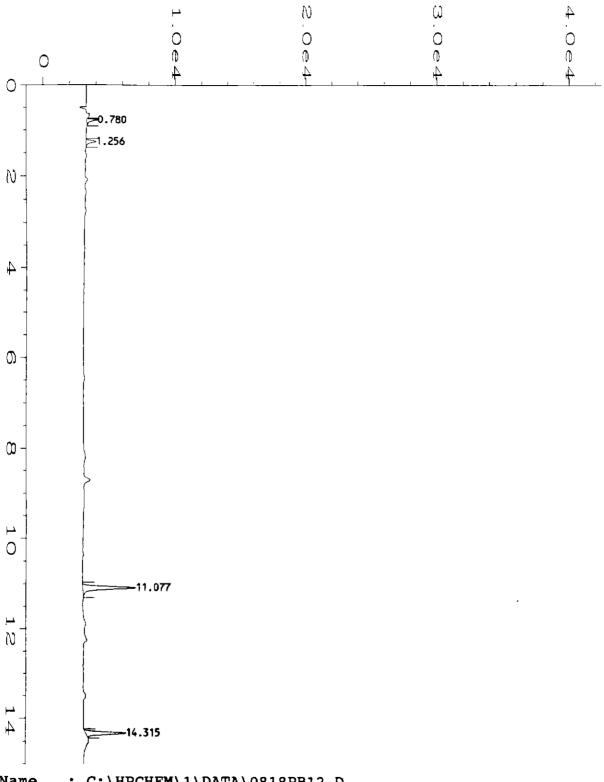

Feet mL

	MDL	Sample	
Compound	ug/L	ug/L	
Dichlorodifluoromethane	0.42	<1.0	
Vinyl chloride	0.16	<1.0	
Chloroethane	0.10	<1.0	
Trichlorofluoromethane	0.21	<1.0	
1,1,2-Trichloro-trifluoroethane	0.10	<1.0	
1,1-Dichloroethene (1,1-DCE)	0.18	<1.0	
Dichloromethane (Methylene chloride)	0.15	<1.0	
trans-1,2-Dichloroethene(t-1,2-DCE)	0.18	<1.0	
1,1-Dichloroethane (1,1-DCA)	0,17	<1.0	
cis-1,2-Dichloroethene (c-1,2-DCE)	0.16	<1.0	
Chloroform	0.22	<1.0	
1,1,1-Trichloroethane (1,1,1-TCA)	0.19	<1.0	
Carbon tetrachloride	0.53	<1.0	
Benzene	0.87	<1.0	
1,2-Dichloroethane (1,2-DCA)	0.26	<1.0	
Trichloroethene (TCE)	0.16	<1.0	
Toluene	0.18	<1.0	
1,1,2-Trichloroethane (1,1,2-TCA)	0.17	<1.0	
Tetrachloroethene (PCE)	0.21	<1.0	
1,1,1,2-Tetrachioroethane	0.31	<1.0	
Ethylbenzene	0.23	<1.0	
m&p-Xylene	0.27	<1.0	
o-Xylene	0.41	<1.0	
1,1,2,2-Tetrachloroethane	0.22	<1.0	

Notes:

^{1-&}quot;MDL ug/L" is the method limit.

^{2-&}quot;Sample ug/L" is the concentration of the analyte in the sample


Data File Name : C:\HPCHEM\1\DATA\0818HB12.D

Operator : JAY BERGER Page Number : 2

Instrument : INSTRUMEN Vial Number : Sample Name : Eq. Blank 1 Injection Number : Run Time Bar Code: Sequence Line : Acquired on : 18 Aug 94 10:03 AM Instrument Method: SG-1.MTH Report Created on: 18 Aug 94 10:18 AM Analysis Method : SG-1.MTH

Sig. 1 in C:\HPCHEM\1\DATA\0818HB12.D
Pk# Ret Time Area

Pk#	Ret Time	Area	Height	Type	Width	Area %
1	0.518	30821	8081	VV	0.059	1.4016
2 3	0.662	12775	3635	VV	0.050	0.5809
	0.790	11344	2576	VV	0.063	0.5158
4	1.526	2703	724	BV	0.054	0.1229
5	1.993	1687	636	PV	0.037	0.0767
6	2.707	1599946	242714	PV	0.098	72.7563
7	3.098	23613	4262	VV	0.070	1.0738
8	3.336	1187	676	VV	0.029	0.0540
9	3.392	2092	509	VB	0.069	0.0951
10	4.701	964	518	PV	0.027	0.0438
11	7.972	8252	1430	BV	0.073	0.3752
12	8.177	1796	805	BB	0.031	0.0817
13	8.890	1056	535	PV	0.030	0.0480
14	9.417	1374	613	BV	0.037	0.0625
15	9.759	2641	567	PV	0.062	0.1201
16	10.039	1088	525	PV	0.033	0.0495
17	11.102	223288	38683	BV	0.083	10.1539
18	11.427	2732	1197	VV	0.033	0.1242
19	12.178	720	543	BV	0.022	0.0327
20	13.841	2607	1276	ΡV	0.030	0.1185
21	14.335	265911	50930	BV	0.075	12.0921
22	14.773	451	184	VV	0.041	0.0205


```
Data File Name
                  : C:\HPCHEM\1\DATA\0818PB12.D
 Operator
                  : JAY BERGER
                                                 Page Number
 Instrument
                  : INSTRUMEN
                                                 Vial Number
 Sample Name
                  : Eq. Blank 1
                                                 Injection Number:
Run Time Bar Code:
                                                 Sequence Line
 Acquired on
                  : 18 Aug 94
                               10:03 AM
                                                 Instrument Method: SG-1.MTH
 Report Created on: 18 Aug 94
                               10:19 AM
                                                 Analysis Method : SG-1.MTH
 Sample Info
```

Data File Name : C:\HPCHEM\1\DATA\0818PB12.D

Operator : JAY BERGER

Instrument : INSTRUMEN

Sample Name : Eq. Blank 1 Page Number : 2 Vial Number : Injection Number :

Run Time Bar Code: Sequence Line :

Acquired on : 18 Aug 94 10:03 AM Report Created on: 18 Aug 94 10:19 AM Instrument Method: SG-1.MTH Analysis Method : SG-1.MTH

Sig. 2 in C:\HPCHEM\1\DATA\0818PB12.D

,	Pk#	Ret Time	Area	Height	Туре	Width	Area %
	1	0.780	2627	829	 VB	0.046	7.5145
	2	1.256	2730	756	BB	0.054	7.8112
	3	11.077	18038	4013	BB	0.068	51.6066
	4	14.315	11558	3027	BB	0.057	33.0676

Data Worksheet GC/PID/ELCD Sample ID: SG-08R Control #: 818941

Sample time: 11:02

Received time: 11:06

Injection time: 11:10

Project name: Geosystems

Sample date: 08/18/94
Project#: 300677
File name: NV-1050
Location: No. Hollywood
Analysis: 8010/8020
Analyst: Jay Berger

Purge volume: 40 Sample flow: NA Vacuum: NA Syringe: 2

Probe depth: 5

18Th. 18Th. Feet CC CC/min "H2O

Plastic 1cc

Sampled by: NC Lab ID: Truck 1

GC ID: GC2 PID/ELCD Sample type: N1

Dilution factor: 4 Calibration date: 07/22/94

Injection volum 0.125 mL

Calib std: no

Standard	Ī	Sample		,
RT		RT	Area	ug/L
0.59	138477		0	0.00
0.71	271379		0	0.00
0.87	195402		0	0.00
0.97	290771		0	0.00
1.23	334184		0	0.00
1.22	443468	1.27	105253	1.90
1.50	533175		0	0.00
1.67	486172	•	0	0.00
1.96	499909		0	0.00
2.46	501 846		0	0.00
2.81	644803		0	0.00
2.97	559745	3.00	3442079	49.19
3.16	660954		0	0.00
3.41	131 96		0	0.00
3.48	536556		0	0.00
4.52	581271	4.58	690519	9,50
7.02	12282		0	0.00
7.82	538285		0	0.00
7.94	640559	7.98	10275700	128.33
9.49	607279		0	0.00
9.53	10974		0	0.00
9.73	12790		0	0.00
10.30	10909		0	0.00
11.41	602475		0	0.00
	RT 0.59 0.71 0.87 0.97 1.23 1.22 1.50 1.67 1.96 2.46 2.81 2.97 3.16 3.41 3.48 4.52 7.02 7.82 7.94 9.49 9.53 9.73 10.30	RT Avg. CF 0.59 138477 0.71 271379 0.87 195402 0.97 290771 1.23 334184 1.22 443468 1.50 533175 1.67 486172 1.96 499909 2.46 501846 2.81 644803 2.97 559745 3.16 660954 3.41 13196 3.48 536556 4.52 581271 7.02 12282 7.82 538285 7.94 640559 9.49 607279 9.53 10974 9.73 12790 10.30 10909	RT Avg. CF RT 0.59	RT Avg. CF RT Area 0.59 138477 0 0.71 271379 0 0.87 195402 0 0.97 290771 0 1.23 334184 0 1.22 443468 1.27 105253 1.50 533175 0 1.67 486172 0 1.96 499909 0 2.46 501846 0 2.81 644803 0 2.97 559745 3.00 3442079 3.16 660954 0 3.41 13196 0 3.48 536556 0 4.52 581271 4.58 690519 7.02 12282 0 7.94 640559 7.98 10275700 9.49 607279 0 0 9.53 10974 0 0 9.73 12790 0 0

Total peaks of PID: 2
Total peaks of ELCD: 4
Unidentified peaks: 0

Notes:

- 1-"Standard RT" is the retention time for the standard.
- 2-"Standard AVE. CF" is the average calibration factor for this instrument.
- 3-"Sample area" is the area under the peak.
- 4-"Sample ug/L" is the concentration of the analyte in the sample

8/25/94,11:57 AM-NV-1050.XLS Ver 3.0 (8010/8020) 04/15/94

Analysis Results GC/PID/ELCD Sample ID: SG-08R Control #: 818941

Sample date: 08/18/94 Project#: 300677

Location: No. Hollywood Analysis: 8010/8020

Analysis: 8010/8020 Dilution factor: 4

Sample type: N1

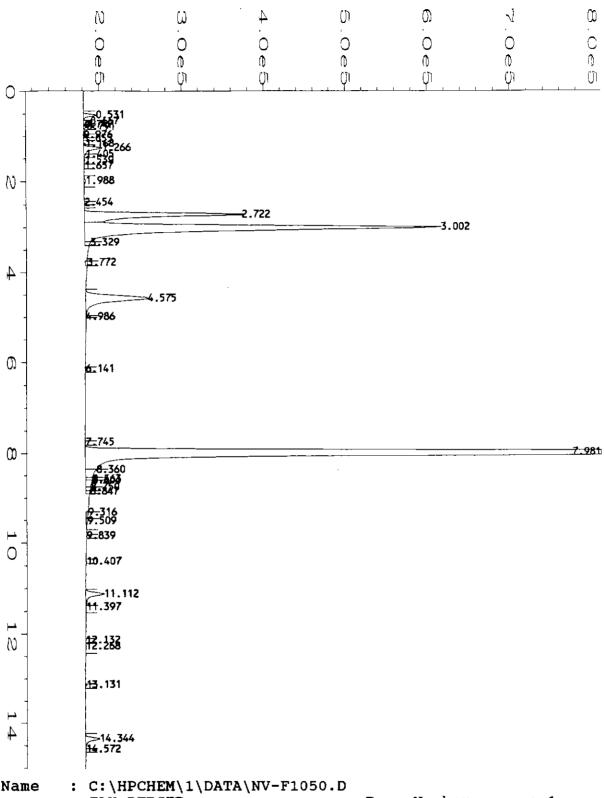
Sampled by: NC
Sample time: 11:02

Probe depth: 5 Feet

Injection volume: 0.13 m

mL	

	MDL	Sample	
Compound	ug/L	ug/L	
Dichlorodifluoromethane	0.42	<1.0	
Vinyl chloride	0.16	<1.0	
Chloroethane	0.10	<1.0	
Trichlorofluoromethane	0.21	<1.0	
1,1,2-Trichloro-trifluoroethane	1.00	<1.0	
1,1-Dichloraethene (1,1-DCE)	0.18	1,90	
Dichloromethane (Methylene chloride)	0.15	<1.0	
trans-1,2-Dichloroethene(t-1,2-DCE)	0.18	<1.0	
1,1-Dichloroethane (1,1-DCA)	0.17	<1.0	
cis-1,2-Dichloroethene (c-1,2-DCE)	0.16	<1.0	
Chloroform	0.22	<1.0	
1,1,1-Trichloroethane (1,1,1-TCA)	0.19	49.19	
Carbon tetrachloride	0.53	<1.0 `	
Benzene	0.87	<1.0	
1,2-Dichloroethane (1,2-DCA)	0.26	<1.0	
Trichloroethene (TCE)	0.16	9.50	
Toluene	0.18	<1.0	
1,1,2-Trichloroethane (1,1,2-TCA)	0.17	<1.0	
Tetrachloroethene (PCE)	0.21	128.33	
1,1,1,2-Tetrachloroethane	0.31	<1.0	
Ethylbenzene	0.23	<1.0	
m&p-Xylene	0.27	<1.0	
o-Xylene	0.41	<1.0	
1,1,2,2-Tetrachloroethane	0.22	<1.0	


Notes:

8/25/94,11:57 AM-NV-1050.XLS

Ver 3.0 (8010/8020) 04/15/94

^{1-&}quot;MDL ug/L" is the method limit.

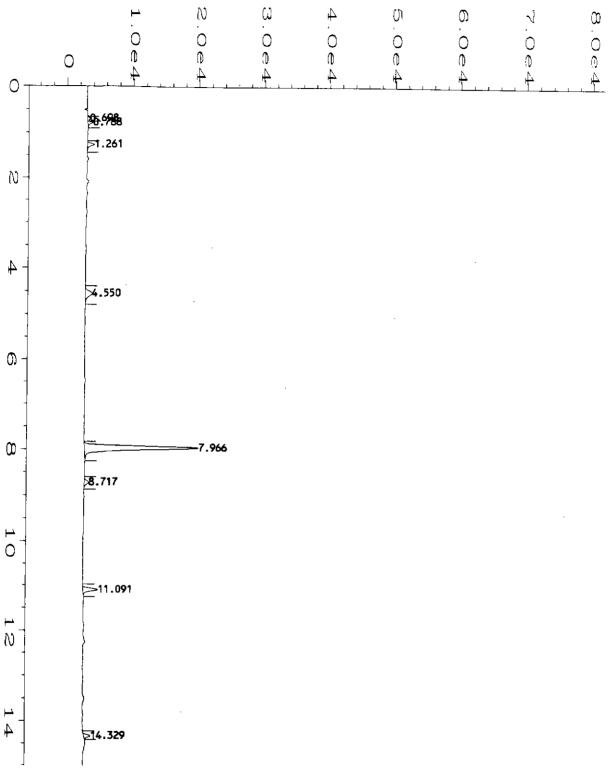
^{2-&}quot;Sample ug/L" is the concentration of the analyte in the sample

Data File Name Page Number Operator : JAY BERGER Vial Number : INSTRUMEN Instrument Injection Number: Sample Name : SG-08R Run Time Bar Code: Sequence Line Acquired on : 18 Aug 94 11:10 AM Instrument Method: SG-1.MTH

Analysis Method : SG-1.MTH Report Created on: 18 Aug 94 11:25 AM

Sample Info : 4:1 Dilution Data File Name : C:\HPCHEM\1\DATA\NV-F1050.D

Operator : JAY BERGER Page Number : 2
Instrument : INSTRUMEN Vial Number : Sample Name : SG-08R Injection Number : Run Time Bar Code: Sequence Line :


Acquired on : 18 Aug 94 11:10 AM Instrument Method: SG-1.MTH Report Created on: 18 Aug 94 11:25 AM Analysis Method : SG-1.MTH

Sig. 1 in C:\HPCHEM\1\DATA\NV-F1050.D

Pk	c#	Ret Time	Area	Height	Туре	Width	Area %
ı	1	0.531	53875	15278	VV	0.051	0.3288
	2	0.667	23204	8734	VV	0.039	0.1416
	3	0.747	2775	1855	VV	0.025	0.0169
	4	0.791	10600	3947	VV	0.039	0.0647
	5	0.976	1745	548	PV	0.052	0.0107
	6	1.055	1152	545	VV	0.033	0.0070
	7	1.168	3746	2633	VV	0.022	0.0229
	8	1.266	105253	22660	VV	0.066	0.6423
	9	1.405	6970	2438	VV	0.048	0.0425
1	LO	1.539	7261	1454	VV	0.063	0.0443
1	.1	1.657	3148	1197	VV	0.035	0.0192
1	.2	1.988	11190	1924	PV	0.078	0.0683
1	L3	2.454	743	546	BV	0.022	0.0045
1	4	2.722	1178525	193339	BV	0.088	7.1918
1	. 5	3.002	3442079	435914	VV	0.103	21.0048
1	16	3.329	32298	6889	VV	0.078	0.1971
1	L 7	3.772	16227	2874	VV	0.082	0.0990
1	.8	4.575	690519	75321	VV	0.118	4.2138
1	.9	4.986	363	260	VV	0.023	0.0022
2	0	6.141	1540	689	PV	0.030	0.0094
2	21	7.745	1235	629	PV	0.036	0.0075
2	22	7.981	1.02757E+007	1640462	VV	0.094	62.7060
2	23	8.360	110544	13584	VV	0.136	0.6746

•	Data File Name Operator Instrument Sample Name Run Time Bar Cod Acquired on Report Created of	: : de:	INSTRUMEN SG-08R 18 Aug 94 11:10	АМ	Vial Inject Seque Instr	Number : Number : tion Number : nce Line : tument Method: rsis Method :	
•	24 8.56	53	30222	8456	vv	0.047	0.1844
	25 8.60	04	63171	8039	VV	0.131	0.3855
	26 8.75	50	30031	6284	VV	0.080	0.1833
	27 8.84	17	20092	5386	VV	0.051	0.1226
	28 9.31	16	18553	2902	VV	0.082	0.1132
	29 9.50	9	15474	1864	VV	0.104	0.0944
	30 9.83	39	1315	567	PV	0.035	0.0080
	31 10.40	07	1351	1030	PV	0.024	0.0082
	32 11.11	12	125947	22512	PV	0.082	0.7686
	33 11.39	97	3179	707	VV	0.059	0.0194
	34 12.13	32	1557	638	PV	0.033	0.0095
_	35 12.26	58	4202	691	VV	0.081	0.0256
	36 13.13	31	2469	1728	BB	0.021	0.0151
	37 14.34	44	87476	17306	BV	0.074	0.5338
	38 14.57	72	1375	696	VB	0.029	0.0084

Total area = 1.63871E+007

Data File Name : C:\HPCHEM\1\DATA\NV-R1050.D Operator : JAY BERGER Page Number : 1 Instrument : INSTRUMEN Vial Number Sample Name : SG-08R Injection Number: Run Time Bar Code: Sequence Line Acquired on : 18 Aug 94 11:10 AM Instrument Method: SG-1.MTH Report Created on: 18 Aug 94 11:25 AM Analysis Method : SG-1.MTH

Sample Info : 4:1 Dilution

Data File Name : C:\HPCHEM\1\DATA\NV-R1050.D
Operator : JAY BERGER
Instrument : INSTRUMEN
Sample Name : SG-08R Page Number : 2 Vial Number Injection Number: Run Time Bar Code: Sequence Line

Acquired on : 18 Aug 94 11:10 AM Instrument Method: SG-1.MTH Report Created on: 18 Aug 94 11:25 AM Analysis Method : SG-1.MTH

Sig. 2 in C:\HPCHEM\1\DATA\NV-R1050.D

519. 2 III C. (MPCHEM/I/DAIA/NV-R1050.D								
	Pk#	Ret Time	Area	Height	Type	Width	Area %	
							}	
	' 1 '	0.698	1694	393	'PV '	0.065	1.2674	
	2	0.788	2409	804	VВ	0.044	1.8025	
	3	1.261	4217	1065	BB	0.060	3.1545	
	4	4.550	8694	1048	BB	0.114	6.5042	
	5	7.966	99430	17288	BB	0.089	74.3849	
	6	8.717	3886	670	BB	0.092	2.9074	
	7	11.091	9767	2228	BB	0.068	7.3065	
	8	14.329	3572	975	BB	0.059	2.6726	

			•
			•
			_
			•
			•
			•
			•
			_
			•
		•	
			•
			•
			•
			•

Data Worksheet GC/PID/ELCD Sample ID: SG-13R Control #: 818942

Project name: Geosystems Sample time: 11:31 Sample date: 08/18/94 Received time: 11:38

18Th. Project#: 300677 Injection time: 11:42 18Th. File name: NV-1051 Probe depth: 5 Feet Location: No. Hollywood Purge volume: 40 CC CC/min Analysis: 8010/8020 Sample flow: NA "H2O Analyst: Jay Berger Vacuum: NA Sampled by: NC Syringe: 3 Plastic 1cc

Lab ID: Truck 1 Dilution factor: 5

GC ID: GC2 PID/ELCD Calibration date: 07/22/94
Sample type: N1 Injection volum 0.1 mL

Calib std: no

Standard		Sample		
RT		RT	Area	ug/L
0.59	138477		0	0.00
0.71	271379		0	0.00
0.87	195402		0	0.00
0.97	290771		0	0.00
1.23	334184		0	0.00
1.22	443468	1.27	33799	0.76
1.50	533175		0	0.00
1.67	486172	•	0	0.00
1.96	499909		0	0.00
2.46	5018 46		0	0.00
2.81	644803		0	0.00
2.97	559745	3.01	2158867	38.57
3.16	660954		0	0.00
3.41	1319 6		0	0.00
3.48	536556		0	0.00
4.52	581271	4.57	471745	8.12
7.02	12282		0	0.00
7.82	538285		0	0.00
7.94	640559	7.98	10203800	159.30
9.49	607279		0	0.00
9.53	10974		0	0.00
9.73	12790		0	0.00
10.30	10909		0	0.00
11.41	602475		0	0.00
	RT 0.59 0.71 0.87 0.97 1.23 1.22 1.50 1.67 1.96 2.46 2.81 2.97 3.16 3.41 3.48 4.52 7.02 7.82 7.94 9.49 9.53 9.73 10.30	RT Avg. CF 0.59 138477 0.71 271379 0.87 195402 0.97 290771 1.23 334184 1.22 443468 1.50 533175 1.67 486172 1.96 499909 2.46 501846 2.81 644803 2.97 559745 3.16 660954 3.41 13196 3.48 536556 4.52 581271 7.02 12282 7.82 538285 7.94 640559 9.49 607279 9.53 10974 9.73 12790 10.30 10909	RT Avg. CF RT 0.59 138477 0.71 271379 0.87 195402 0.97 290771 1.23 334184 1.27 1.50 533175 1.67 486172 1.96 499909 2.46 501846 2.81 644803 2.97 559745 3.01 3.16 660954 3.41 13196 3.48 536556 4.52 581271 4.57 7.02 12282 7.82 538285 7.94 640559 7.98 9.49 607279 9.53 10974 9.73 12790 10.30 10909	RT Avg. CF RT Area 0.59 138477 0 0.71 271379 0 0.87 195402 0 0.97 290771 0 1.23 334184 0 1.22 443468 1.27 33799 1.50 533175 0 1.67 486172 0 1.96 499909 0 2.46 501846 0 2.81 644803 0 2.97 559745 3.01 2158867 3.16 660954 0 3.41 13196 0 3.48 536556 0 4.52 581271 4.57 471745 7.02 12282 0 7.94 640559 7.98 10203800 9.49 607279 0 0 9.53 10974 0 0 9.73 12790 0 0

Total peaks of PID: 2
Total peaks of ELCD: 4
Unidentified peaks: 0

Notes:

8/25/94,11.59 AM-NV-1051.XLS Ver 3.0 (8010/8020) 04/15/94

^{1-&}quot;Standard RT" is the retention time for the standard.

^{2-&}quot;Standard AVE. CF" is the average calibration factor for this instrument.

^{3-&}quot;Sample area" is the area under the peak.

^{4-&}quot;Sample ug/L" is the concentration of the analyte in the sample

Analysis Results GC/PID/ELCD

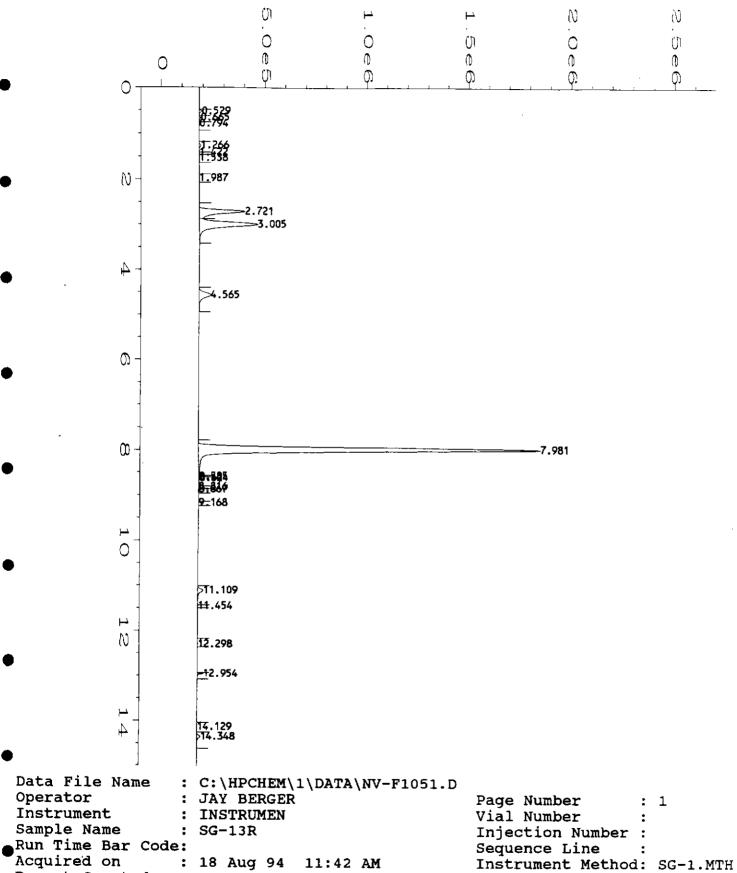
Sample ID: SG-13R Control #: 818942

Sample date: 08/18/94 Project#: 300677

Location: No. Hollywood Analysis: 8010/8020 Sample type: N1

Sampled by: NC Sample time: 11:31

Probe depth: 5 Dilution factor: 5


Injection volume: 0.10

Feet mL

	MDL	Sample	
Compound	ug/L	ug/L	
Dichlorodifluoromethane	0.42	<1.0	
Vinyl chloride	0,16	<1.0	-
Chloroethane	0.10	<1.0	
Trichlorofluoromethane	0.21	<1.0	
1,1,2-Trichloro-triffuoroethane	1.00	<1.0	
1,1-Dichloroethene (1,1-DCE)	0.18	0.76	
Dichloromethane (Methylene chloride)	0.15	<1.0	
trans-1,2-Dichloroethene(t-1,2-DCE)	0.18	<1.0	
1,1-Dichloroethane (1,1-DCA)	0.17	<1.0	
cis-1,2-Dichloroethene (c-1,2-DCE)	0.16	<1.0	
Chloroform	0.22	<1.0	
1,1,1-Trichloroethane (1,1,1-TCA)	0.19	38.57	
Carbon tetrachloride	0.53	<1.0 ·	
Benzene	0.87	<1.0	
1,2-Dichloroethane (1,2-DCA)	0.26	<1.0	
Trichloroethene (TCE)	0.16	8.12	
Toluene	0.18	<1.0	
1,1,2-Trichloroethane (1,1,2-TCA)	0.17	<1.0	
Tetrachloroethene (PCE)	0.21	159.30	
1,1,1,2-Tetrachloroethane	0.31	<1.0	
Ethylbenzene	0.23	<1.0	
m&p-Xylene	0.27	<1.0	
o-Xylene	0.41	<1.0	
1,1,2,2-Tetrachloroethane	0.22	<1.0	

8/25/94,11:59 AM-NV-1051.XLS Ver 3.0 (8010/8020) 04/15/94

Notes: 1-"MDL ug/L" is the method limit. 2-"Sample ug/L" is the concentration of the analyte in the sample

Sample Info

Operator

Report Created on: 18 Aug 94 11:57 AM : 5:1 Dilution

Analysis Method : SG-1.MTH

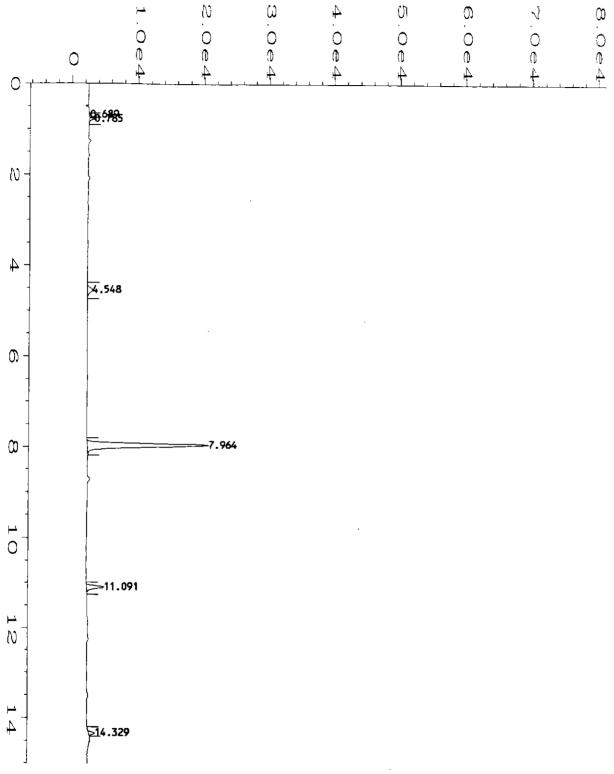
Data File Name : C:\HPCHEM\1\DATA\NV-F1051.D

Operator : JAY BERGER Page Number : 2
Instrument : INSTRUMEN Vial Number : Sample Name : SG-13R Injection Number :

Run Time Bar Code: Sequence Line

Acquired on : 18 Aug 94 11:42 AM Instrument Method: SG-1.MTH Report Created on: 18 Aug 94 11:57 AM Analysis Method : SG-1.MTH

Sig. 1 in C:\HPCHEM\1\DATA\NV-F1051.D


Pk#	Ret Time	Area	Height	Type	Width	Area %
 1	0.529	38929	12951	BV	0.044	0.2668
2	0.665	22778	8163	PV	0.039	0.1561
3	0.794	9045	2574	VV	0.051	0.0620
4	1.266	33799	7135	PV	0.072	0.2317
5	1.422	1222	704	VV	0.029	0.0084
6	1.538	4445	1017	VB	0.056	0.0305
7	1.987	3437	720	PV	0.062	0.0236
8	2.721	1306081	221128	PV	0.086	8.9520
9	3.005	2158867	282278	VV	0.103	14.7971
10	4.565	471745	56543	PV	0.116	3.2334
11	7.981	1.02038E+007	1671932	PV	0.096	69.9374
12	8.585	7556	3891	VV	0.032	0.0518
13	8.624	34700	4120	VV	0.103	0.2378
14	8.816	5493	1808	VV	0.051	0.0376
15	8.867	8491	1582	VV	0.089	0.0582
16	9.168	1565	596	ΡV	0.035	0.0107
17	11.109	144169	26424	PV	0.080	0.9881
18	11.454	572	289	VV	0.028	0.0039
19	12.298	2996	655	BV	0.064	0.0205
20	12.954	40453	30335	PΛ	0.020	0.2773
21	14.129	5530	2066	VV	0.045	0.0379
22	14.348	84206	16363	PV	0.076	0.5772

Data File Name : C:\HPCHEM\1\DATA\NV-F1051.D
Operator : JAY BERGER
Instrument : INSTRUMEN
Sample Name : SG-13R Page Number : 3 Vial Number Injection Number :

Run Time Bar Code: Sequence Line :

Acquired on : 18 Aug 94 11:42 AM Report Created on: 18 Aug 94 11:57 AM Instrument Method: SG-1.MTH Analysis Method : SG-1.MTH

Total area = 1.45898E+007

Data File Name	:	C:\HPCHEM\1\DATA\NV-R1051.D	•		
Operator	:	JAY BERGER	Page Number	:	1
Instrument	:	INSTRUMEN	Vial Number	:	
Sample Name	:	SG-13R	Injection Number	:	
Run Time Bar Code	e:		Sequence Line	:	
Acquired on	:	18 Aug 94 11:42 AM	Instrument Method	:	SG-1.MTH
Report Created or	n:	18 Aug 94 11:57 AM	Analysis Method	:	SG-1.MTH

Sample Info : 5:1 Dilution

Data File Name : C:\HPCHEM\1\DATA\NV-R1051.D

Operator : JAY BERGER Page Number : 2
Instrument : INSTRUMEN Vial Number :
Sample Name : SG-13R Injection Number :
Run Time Bar Code: Sequence Line :

Acquired on : 18 Aug 94 11:42 AM Instrument Method: SG-1.MTH Report Created on: 18 Aug 94 11:57 AM Analysis Method : SG-1.MTH

Sig. 2 in C:\HPCHEM\1\DATA\NV-R1051.D

 Pk#	Ret Time	Area	Height	Туре	Width	Area %
1	0.689	653	206	PB	0.045	0.5225
2	0.785	1886	765	BB	0.036	1.5092
3	4.548	5846	783	BB	0.107	4.6769
4	7.964	101823	18382	BB	0.086	81.4590
5	11.091	11642	2657	BB	0.068	9.3133
6	14.329	3149	933	BB	0.054	2.5191

Total area = 124999

			_
			•
			•
			_
			•
			•
	•		•
			•
			•
			_
			•
			•
			•
			•
		•	

Data Worksheet GC/PID/ELCD

Sample ID: SG-11R Control #: 818944

Project name: Geosystems Sample date: 08/18/94

Project#: 300677
File name: NV-1053
Location: No. Hollywood
Analysis: 8010/8020
Analyst: Jay Berger
Sampled by: NC

Lab IĎ: Truck 1 GC ID: GC2 PID/ELCD

Sample type: N1 Calib std: no Sample time: 12:01
Received time: 12:05 18Th.
Injection time: 12:31 18Th.
Probe depth: 5 Feet
Purge volume: 40 CC

Probe depth: 5 Feet
Purge volume: 40 CC
Sample flow: NA CC/min
Vacuum: NA "H2O
Syringe: 4 Plastic 1cc

Dilution factor: 20 Calibration date: 07/22/94

Injection volum 0.025 mL

	Standard		Sample		
Compound	RT	Avg. CF	RT	Area	ug/L
Dichlorodifluoromethane	0.59	138477		0	0.00
Vinyl chloride	0.71	271379		0	0.00
Chloroethane	0.87	195402		0	0.00
Trichlorofluoromethane	0.97	290771		0	0.00
1,1,2-Trichloro-trifluoroethane	1.23	334184		0	0.00
1,1-Dichloroethene (1,1-DCE)	1.22	443468	1.32	5087	0.46
Dichloromethane (Methylene chloride)	1.50	533175		0	0.00
trans-1,2-Dichloroethene(t-1,2-DCE)	1.67	486172	•	0	0.00
1,1-Dichloroethane (1,1-DCA)	1.96	499909		0	0.00
cis-1,2-Dichtoroethene (c-1,2-DCE)	2.46	501846		0	0.00
Chloroform	2.81	644803		0	0.00
1,1,1-Trichloroethane (1,1,1-TCA)	2. 9 7	559745	3.05	886169	63.33
Carbon tetrachloride	3.16	660954		0	0.00
Benzene	3.41	13196		0	0.00
1,2-Dichloroethane (1,2-DCA)	3.48	536556		0	0.00
Trichloroethene (TCE)	4.52	581271	4.61	74280	5.11
Toluene	7.02	12282		0	0.00
1,1,2-Trichloroethane (1,1,2-TCA)	7.82	538285		0	0.00
Tetrachloroethene (PCE)	7.94	640559	7.99	14215000	887.66
1,1,1,2-Tetrachloroethane	9.49	607279		0	0.00
Ethylbenzene	9.53	10974		0	0.00
m&p-Xylene	9.73	12790		0	0.00
a-Xylene	10.30	10909		0	0.00
1,1,2,2-Tetrachloroethane	11.41	602475		0	0.00

Total peaks of PID: 2
Total peaks of ELCD: 4
Unidentified peaks: 0

Notes:

8/25/94,12:01 PM-NV-1053,XLS Ver 3.0 (8010/8020) 04/15/94

^{1-&}quot;Standard RT" is the retention time for the standard.

^{2-&}quot;Standard AVE. CF" is the average calibration factor for this instrument.

^{3-&}quot;Sample area" is the area under the peak.

^{4-&}quot;Sample ug/L" is the concentration of the analyte in the sample

Analysis Results GC/PID/ELCD Sample ID: SG-11R Control #: 818944

Sample date: 08/18/94 Project#: 300677

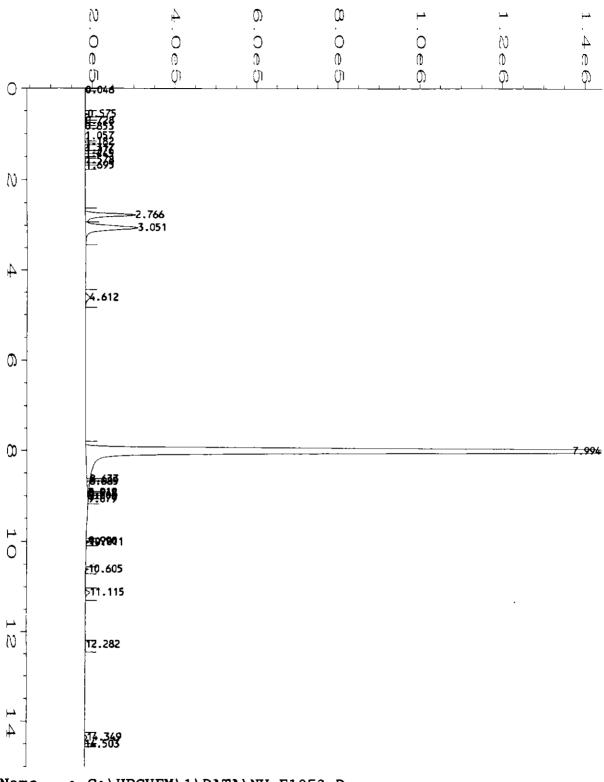
Location: No. Hollywood Analysis: 8010/8020

Sample type: N1

Sampled by: NC Sample time: 12:01

Probe depth: 5

Dilution factor: 20 Injection volume: 0.03 Feet


mL

0	MDL	Sample	
Compound	ug/L	ug/L	
Dichlorodifluoromethane	0.42	<1.0	
Vinyl chloride	0.16	<1.0	
Chloroethane	0.10	<1.0	
Trichlorofluoromethane	0.21	<1.0	
1,1,2-Trichloro-trifluoroethane	1.00	<1.0	
1,1-Dichloroethene (1,1-DCE)	0.18	0.46	
Dichloromethane (Methylene chloride)	0.15	<1.0	
trans-1,2-Dichloroethene(t-1,2-DCE)	0.18	<1.0	
1,1-Dichloroethane (1,1-DCA)	0.17	<1.0	
cis-1,2-Dichloroethene (c-1,2-DCE)	0.16	<1.0	
Chloroform	0.22	<1.0	
1,1,1-Trichloroethane (1,1,1-TCA)	0.19	63.33	
Carbon tetrachloride	0.53	<1.0	
Benzene	0.87	<1.0	
1,2-Dichloroethane (1,2-DCA)	0.26	<1.0	•
Trichloroethene (TCE)	0.16	5.11	
Toluene	0.18	<1.0	
1,1,2-Trichloroethane (1,1,2-TCA)	0.17	<1.0	
Tetrachloroethene (PCE)	0.21	887.66	
1,1,1,2-Tetrachloroethane	0.31	<1.0	
Ethylbenzene	0.23	<1.0	
m&p-Xylene	0.27	<1.0	
o-Xylene	0.41	<1.0	
1,1,2,2-Tetrachloroethane	0.22	<1.0	

Notes:

^{1-&}quot;MDL ug/L" is the method limit.

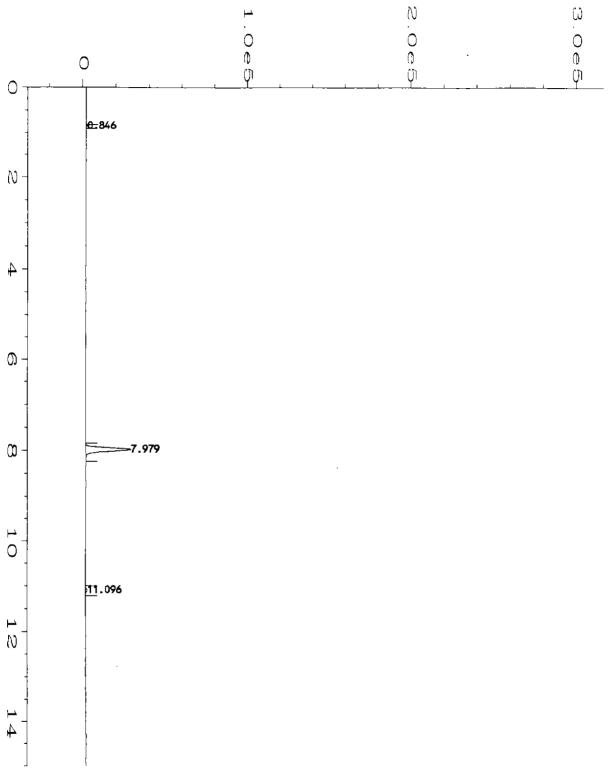
^{2-&}quot;Sample ug/L" is the concentration of the analyte in the sample

Data File Name : C:\HPCHEM\1\DATA\NV-F1053.D Operator : JAY BERGER Page Number : 1 Instrument : INSTRUMEN Vial Number Sample Name : SG-11R Injection Number: Run Time Bar Code: Sequence Line Acquired on : 18 Aug 94 12:31 PM Instrument Method: SG-1.MTH Report Created on: 18 Aug 94 12:46 PM Analysis Method : SG-1.MTH

Sample Info : 20:1 Dilution

Data File Name : C:\HPCHEM\1\DATA\NV-F1053.D

Operator : JAY BERGER Page Number : 2
Instrument : INSTRUMEN Vial Number :
Sample Name : SG-11R Injection Number :
Run Time Bar Code: Sequence Line :


Acquired on : 18 Aug 94 12:31 PM Instrument Method: SG-1.MTH Report Created on: 18 Aug 94 12:46 PM Analysis Method : SG-1.MTH

Sig. 1 in C:\HPCHEM\1\DATA\NV-F1053.D

Pk#	Ret Time	Area	Height	Type	Width	Area %
1	0.046	847	576	BV	0.024	0.0053
2	0.575	11149	6406	VB	0.027	0.0695
3	0.728	1592	1209	BV	0.022	0.0099
4	0.853	1770	1133	VV	0.025	0.0110
5	1.057	6095	586	PV	0.128	0.0380
6	1.182	686	436	VV	0.023	0.0043
7	1.317	5087	1184	VV	0.061	0.0317
8	1.376	1896	718	VV	0.044	0.0118
9	1.445	1980	675	VV	0.041	0.0123
10	1.578	3227	855	VV	0.052	0.0201
11	1.695	1514	569	VV	0.036	0.0094
12	2.766	605186	121654	BV	0.076	3.7722
13	3.051	886169	126758	VV	0.100	5.5236
14	4.612	74280	9810	BV	0.099	0.4630
15	7.994	1.4215E+007	2402540	PV	0.090	88.6044
16	8.633	21583	7622	VV	0.047	0.1345
17	8.685	61529	6493	VV	0.118	0.3835
18	8.919	3877	2477	VV	0.026	0.0242
19	8.948	7806	2741	VV	0.037	0.0487
20	9.000	6563	1860	VV	0.059	0.0409
21	9.079	4595	1249	VV	0.061	0.0286
22	9.990	7531	6252	PV	0.020	0.0469
23	10.011	10982	7281	VB	0.021	0.0685

•	Operator Instrument	:	C:\HPCHEM\1\DATA\NV- JAY BERGER INSTRUMEN SG-11R	-F1053.D	Vial Injec	Number : Number : tion Number : nce Line :	3
			18 Aug 94 12:31 PM 18 Aug 94 12:46 PM			ument Method: sis Method :	
	-		-		_		
	24 10.605		9933	6989	BV	0.021	0.0619
	25 11.115		53238	10702	VV	0.075	0.3318
	26 12.282		8777	1526	BV	0.072	0.0547
	27 14.349		29373	5583	PV	0.070	0.1831
	28 14.503		956	508	VB	0.031	0.0060

● Total area = 1.60432E+007

: C:\HPCHEM\1\DATA\NV-R1053.D Data File Name Page Number Operator : JAY BERGER Vial Number Instrument : INSTRUMEN Injection Number: Sample Name : SG-11R Sequence Line Run Time Bar Code: Instrument Method: SG-1.MTH 12:31 PM : 18 Aug 94 Acquired on Analysis Method : SG-1.MTH Report Created on: 18 Aug 94 12:46 PM

Sample Info : 20:1 Dilution

Data File Name : C:\HPCHEM\1\DATA\NV-R1053.D

Operator : JAY BERGER Page Number : 2

Instrument : INSTRUMEN Vial Number : Sample Name : SG-11R Injection Number : Run Time Bar Code: Sequence Line :

Acquired on : 18 Aug 94 12:31 PM Instrument Method: SG-1.MTH Report Created on: 18 Aug 94 12:46 PM Analysis Method : SG-1.MTH

Sig. 2 in C:\HPCHEM\1\DATA\NV-R1053.D

_	# Ret Time	Area	Height	Type	Width	Area %
1	0.846	1072	800	BB	0.021	0.7137
	2 7.979	144858	27269	BB	0.083	96.4327
	3 11.096	4287	1026	BB	0.064	2.8536

Total area = 150216

	 		_	
				_
				•
				_
				•
				_
				•
				_
				•
				_
				•
				_
				•
				•
				_
				•
				_
				•
				_
				•
				=
				•

Data Worksheet GC/PID/ELCD

Sample ID: SG-10R Control #: 818945

Project name: Geosystems Sample date: 08/18/94 Project#: 300677 File name: NV-1054 Location: No. Hollywood Analysis: 8010/8020 Analyst: Jay Berger Sampled by: NC

Lab ID: Truck 1 GC ID: GC2 PID/ELCD

Sample type: N1 Calib std: no

Sample time: 12:49 Received time: 12:52 18Th. Injection time: 12:57 18Th. Probe depth: 5 Feet Purge volume: 40 CC Sample flow: NA CC/min Vacuum: NA "H2O Syringe: 5 Plastic 1cc

Dilution factor: 4 Calibration date: 07/22/94 Injection volum 0.125

mL

	Standard		Sample		
Compound	RT	Avg. CF	RT .	Агеа	ug/L
Dichlorodifluoromethane	0.59	138477	'	0	0.00
Vinyl chloride	0.71	271379		0	0.00
Chloroethane	0.87	195402		0	0.00
Trichlorofluoromethane	0.97	290771		0	0.00
1,1,2-Trichloro-trifluoroethane	1.23	334184		O	0.00
1,1-Dichloroethene (1,1-DCE)	1.22	443468	1.27	25192	0.45
Dichloromethane (Methylene chloride)	1.50	533175		0	0.00
trans-1,2-Dichloroethene(t-1,2-DCE)	1.67	486172		0	0.00
1,1-Dichloroethane (1,1-DCA)	1.96	499909		0	0.00
cis-1,2-Dichloroethene (c-1,2-DCE)	2.46	501846		0	0.00
Chloroform	2.81	644803		0	0.00
1,1,1-Trichloroethane (1,1,1-TCA)	2.97	559745	3.01	1592299	22.76
Carbon tetrachloride	3.16	660954		0	0.00
Benzene	3.41	13196		0	0.00
1,2-Dichloroethane (1,2-DCA)	3.48	536556		0	0.00
Trichloroethene (TCE)	4.52	581271	4.56	620191	8.54
Toluene	7.02	12282		0	0.00
1,1,2-Trichloroethane (1,1,2-TCA)	7.82	538285		0	0.00
Tetrachloroethene (PCE)	7.94	640559	7.98	7330231	91.55
1,1,1,2-Tetrachloroethane	9.49	607279		0	0.00
Ethylbenzene	9.53	10974		0	0.00
m&p-Xylene	9.73	12790		0	0.00
o-Xylene	10.30	10909		0	0.00
1,1,2,2-Tetrachioroethane	11.41	602475		0	0.00

Total peaks of PID: 2 Total peaks of ELCD: 4 Unidentified peaks: a

Notes:

- 1-"Standard RT" is the retention time for the standard.
- 2-"Standard AVE, CF" is the average calibration factor for this instrument.
- 3-"Sample area" is the area under the peak.
- 4-"Sample ug/L" is the concentration of the analyte in the sample

Analysis Results GC/PID/ELCD

Sample ID: SG-10R Control #: 818945

Feet

mL

Sample date: 08/18/94 Project#: 300677

Location: No. Hollywood Analysis: 8010/8020

Sampled by: NC Sample time: 12:49 Probe depth: 5 Dilution factor: 4

Sample type: N1 Injection volume: 0.13

	MDL	Sample	
Compound	ug/L	ug/L	
Dichlorodifluoromethane	0.42	<1.0	
Vinyl chloride	0.16	<1.0	
Chloroethane	0.10	<1.0	
Trichlorofluoromethane	0.21	<1.0	
1,1,2-Trichloro-trifluoroethane	1.00	<1.0	
1,1-Dichloroethene (1,1-DCE)	0.18	0.45	
Dichloromethane (Methylene chloride)	0.15	<1.0	
trans-1,2-Dichloroethene(t-1,2-DCE)	0.18	<1.0	
1,1-Dichloroethane (1,1-DCA)	0.17	<1.0	
cis-1,2-Dichloroethene (c-1,2-DCE)	0.16	<1.0	
Chloroform	0.22	<1.0	
1,1,1-Trichloroethane (1,1,1-TCA)	0.19	22.76	
Carbon tetrachloride	0.53	<1.0	
Benzene	0.87	<1.0 `	
1,2-Dichloroethane (1,2-DCA)	0.26	<1.0	
Trichloroethene (TCE)	0.16	8.54	
Toluene	0.18	<1.0	
1,1,2-Trichloroethane (1,1,2-TCA)	0.17	<1.0	
Tetrachloroethene (PCE)	0.21	91.55	
1,1,1,2-Tetrachloroethane	0.31	<1.0	
Ethylbenzene	0.23	<1.0	
m&p-Xylene	0.27	<1.0	
o-Xylene	0.41	<1.0	
1,1,2,2-Tetrachioroethane	0.22	<1.0	

Notes:

^{1-&}quot;MOL ug/L" is the method limit.

^{2-&}quot;Sample ug/L" is the concentration of the analyte in the sample

Data File Name : C:\HPCHEM\1\DATA\NV-F1054.D
Operator : JAY BERGER
Instrument : INSTRUMEN
Sample Name : SG-10R Page Number : 2 Vial Number Injection Number: Run Time Bar Code: Sequence Line :

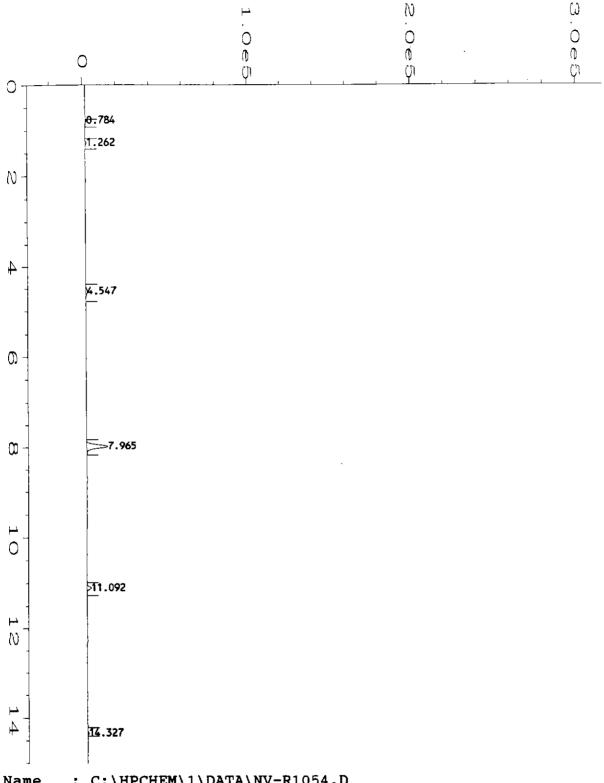
Acquired on : 18 Aug 94 12:57 PM Instrument Method: SG-1.MTH Report Created on: 18 Aug 94 01:12 PM Analysis Method : SG-1.MTH

Sig. 1 in C:\HPCHEM\1\DATA\NV-F1054.D

Pk# 	Ret Time	Area	Height	Type	Width	Area %
' 1'	0.510	37581	14425	BV	0.036	0.3304
2	0.665	12398	5318	PV	0.035	0.1090
3	0.792	6016	2007	VV	0.045	0.0529
4	1.054	4115	500	ΡV	0.101	0.0362
5	1.265	25192	3553	VV	0.097	0.2215
6	1.525	9333	1548	VV	0.084	0.0821
7	1.647	933	381	VV	0.041	0.0082
8	1.989	2775	645	PV	0.057	0.0244
9	2.720	1422903	232259	PV	0.092	12.5099
10	3.005	1592299	192497	VV	0.122	13.9992
11	3.670	2012	941	VV	0.043	0.0177
12	4.564	620191	70710	VV	0.131	5.4526
13	7.980	7330231	1176539	BV	0.095	64.4461
14	8.941	17744	3444	VV	0.066	0.1560
15	9.018	7703	2919	VV	0.044	0.0677
16	9.067	32821	2911	VV	0.188	0.2886
17	9.521	20667	1957	VV	0.138	0.1817
18	11.112	134333	24073	PΛ	0.083	1.1810
19	11.634	14990	7185	PV	0.030	0.1318
20	11.898	1265	523	VB	0.049	0.0111
21	12.286	24735	4293	PB	0.088	0.2175
22	14.345	53966	9452	VV	0.085	0.4745

Data File Name : C:\HPCHEM\1\DATA\NV-F1054.D

Operator : JAY BERGER
Instrument : INSTRUMEN
Sample Name : SG-10R


Run Time Bar Code:

Acquired on : 18 Aug 94 12:57 PM Report Created on: 18 Aug 94 01:12 PM

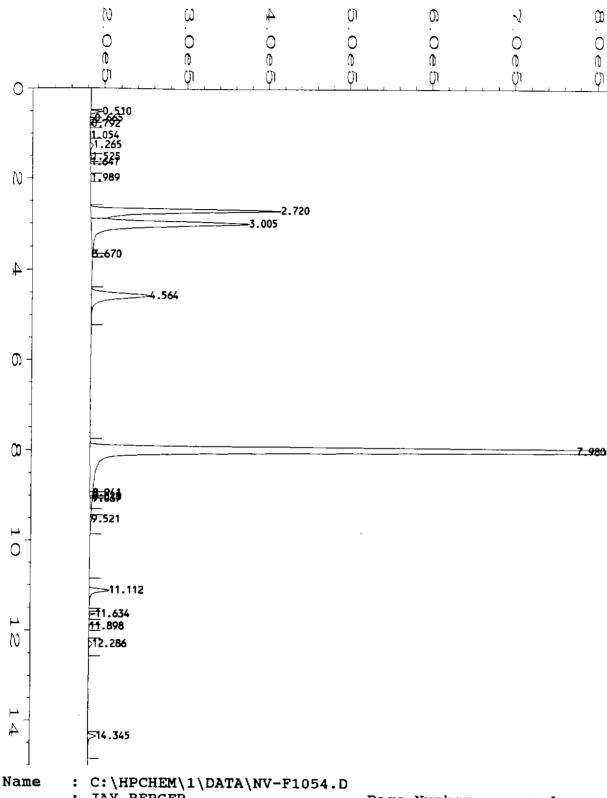
Page Number : 3 Vial Number Injection Number: Sequence Line :

Instrument Method: SG-1.MTH Analysis Method : SG-1.MTH

Total area = 1.13742E+007

Data File Name : C:\HPCHEM\1\DATA\NV-R1054.D Page Number Operator : JAY BERGER Vial Number Instrument : INSTRUMEN Injection Number: Sample Name : SG-10R Sequence Line Run Time Bar Code: Instrument Method: SG-1.MTH Acquired on : 18 Aug 94 12:57 PM Report Created on: 18 Aug 94 01:13 PM Analysis Method : SG-1.MTH Sample Info : 4:1 Dilution

Data File Name : C:\HPCHEM\1\DATA\NV-R1054.D


Operator : JAY BERGER Page Number : Instrument : INSTRUMEN Vial Number : Sample Name : SG-10R Injection Number : Run Time Bar Code: Sequence Line :

Acquired on : 18 Aug 94 12:57 PM Instrument Method: SG-1.MTH Report Created on: 18 Aug 94 01:13 PM Analysis Method : SG-1.MTH

Sig. 2 in C:\HPCHEM\1\DATA\NV-R1054.D

9		in C. The Chies	ILTIDUIU/NA-VIO					
	Pk#	Ret Time	Area	Height	Type	Width	Area %	
	1	0.784	2084	762	ВВ	0.040	2.1479	
	2	1.262	2862	740	BB	0.058	2.9497	
	3	4.547	8350	1054	BB	0.106	8.6048	
	4	7.965	71046	12669	BB	0.087	73.2139	
	5	11.092	10806	2468	BB	0.068	11.1357	
	6	14.327	1890	562	BV	0.055	1.9479	

Total area = 97039

Data File Name Operator : JAY BERGER Page Number Instrument : INSTRUMEN Vial Number Sample Name : SG-10R Injection Number: Run Time Bar Code: Sequence Line Acquired on : 18 Aug 94 12:57 PM Instrument Method: SG-1.MTH Report Created on: 18 Aug 94 01:12 PM Analysis Method : SG-1.MTH

: 4:1 Dilution Sample Info

		•
		_
		•
		•
		_
		•
		•
		•
		_
		•
		•
		_
		_
		•
		_
		•
		•

Data Worksheet GC/PID/ELCD

Sample ID: SG-6R Control #: 818946

Project name: Geosystems Sample date: 08/18/94

Project#: 300677 File name: NV-1055 Location: No. Hollywood Analysis: 8010/8020 Analyst: Jay Berger Sampled by: NC Lab ID: Truck 1

GC ID: GC2 PID/ELCD

Sample type: N1 Calib std: no

Sample time: 13:16 Received time: 13:20 18Th. Injection time: 13:24 18Th. Probe depth: 5 Feet Purge volume: 40 CC

Sample flow: NA CC/min Vacuum: NA "H2O Syringe: 6 Plastic 1cc

Dilution factor: 5

Calibration date: 07/22/94 Injection volum 0.1 mL

	Standard	T	Sample		
Compound	RT	Avg. CF	RT	Area	ug/L
Dichlorodifluoromethane	0.59	138477		0	0.00
Vinyl chloride	0.71	271379		0	0.00
Chloroethane	0.87	195402		0	0.00
Trichlorofluoromethane	0.97	290771		0	0.00
1,1,2-Trichloro-triftuoroethane	1.23	334184		0	0.00
1,1-Dichloroethene (1,1-DCE)	1.22	443468	1.27	108259	2.44
Dichloromethane (Methylene chloride)	1.50	533175		0	0.00
trans-1,2-Dichloroethene(t-1,2-DCE)	1.67	486172		0	0.00
1,1-Dichloroethane (1,1-DCA)	1.96	499909	•	٥	0.00
cis-1,2-Dichloroethene (c-1,2-DCE)	2.46	501846		0	0.00
Chloroform	2.81	644803		0	0.00
1,1,1-Trichloroethane (1,1,1-TCA)	2.97	559745	3.01	2707448	48.37
Carbon tetrachloride	3.16	660954		0	0.00
Benzene	3.41	13196		0	0.00
1,2-Dichloroethane (1,2-DCA)	3.48	536556		0	0.00
Trichloroethene (TCE)	4.52	581271	4.57	806941	13.88
Toluene	7.02	12282		0	0.00
1,1,2-Trichtoroethane (1,1,2-TCA)	7.82	538285		0	0.00
Tetrachloroethene (PCE)	7.94	640559	7.98	8131533	126.94
1,1,1,2-Tetrachloroethane	9.49	607279		0	0.00
Ethylbenzene	9.53	10974		0	0.00
m&p-Xylene	9.73	12790		0	0.00
a-Xylene	10.30	10909		0	0.00
1,1,2,2-Tetrachloroethane	11.41	602475		0	0.00

Total peaks of PID: 2 Total peaks of ELCD: 4 Unidentified peaks: 0

^{1-&}quot;Standard RT" is the retention time for the standard.

^{2-&}quot;Standard AVE. CF" is the average calibration factor for this instrument.

^{3-&}quot;Sample area" is the area under the peak.

^{4-&}quot;Sample ug/t." is the concentration of the analyte in the sample

Analysis Results GC/PID/ELCD Sample ID: SG-6R Control #: 818946

Sample date: 08/18/94 Project#: 300677

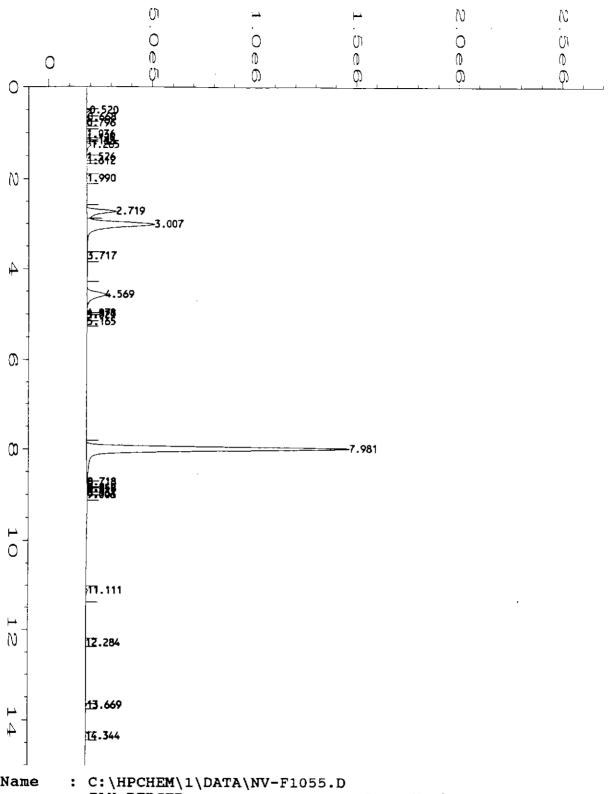
Location: No. Hollywood Analysis: 8010/8020 Sample type: N1 Sampled by: NC Sample time: 13:16 Probe depth: 5

Dilution factor: 5

Injection volume: 0.10

Feet

шL


	MDL	Sample	
Compound	ug/L	uġ/L	
Dichlorodifluoromethane	0.42	<1.0	
Vinyl chloride	0.16	<1.0	
Chloroethane	0.10	<1.0	
Trichlorofluoromethane	0.21	<1.0	
1,1,2-Trichloro-trifluoroethane	1.00	<1.0	
1,1-Dichloroethene (1,1-DCE)	0.18	2.44	
Dichloromethane (Methylene chloride)	0.15	<1.0	
trans-1,2-Dichloroethene(t-1,2-DCE)	0.18	<1.0	
1,1-Dichloroethane (1,1-DCA)	0.17	<1.0	
cis-1,2-Dichloroethene (c-1,2-DCE)	0.16	<1.0	
Chloroform	0.22	<1.0	
1,1,1-Trichloroethane (1,1,1-TCA)	0.19	48.37	
Carbon tetrachloride	0.53	<1.0	
Benzene	0.87	<1.0 '	
1,2-Dichloroethane (1,2-DCA)	0.26	<1.0	
Trichloroethene (TCE)	0.16	13.88	
Toluene	0.18	<1.0	
1,1,2-Trichloroethane (1,1,2-TCA)	0.17	<1.0	
Tetrachloroethene (PCE)	0.21	126.94	
1,1,1,2-Tetrachioroethane	0.31	<1.0	
Ethylbenzene	0.23	<1.0	
m&p-Xylene	0.27	<1.0	
o-Xylene	0.41	<1.0	
1,1,2,2-Tetrachloroethane	0.22	<1.0	

Notes:

8/25/94,12:32 PM-NV-1056.XLS Ver 3.0 (8010/8020) 04/15/94

^{1-&}quot;MOL ug/L" is the method limit.

^{2-&}quot;Sample ug/L" is the concentration of the analyte in the sample

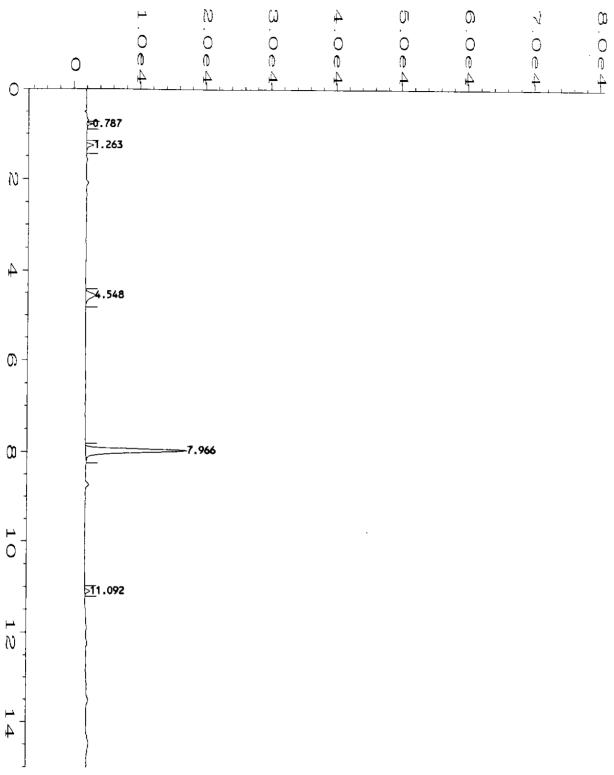
Data File Name Operator : JAY BERGER Page Number : 1 Instrument : INSTRUMEN Vial Number Sample Name : SG-6R Injection Number: ●Run Time Bar Code: Sequence Line Acquired on : 18 Aug 94 01:24 PM Instrument Method: SG-1.MTH Report Created on: 18 Aug 94 Analysis Method : SG-1.MTH 01:39 PM Sample Info : 5:1 Dilution

Data File Name : C:\HPCHEM\1\DATA\NV-F1055.D

Operator : JAY BERGER Page Number : 2
Instrument : INSTRUMEN Vial Number :
Sample Name : SG-6R Injection Number :

Run Time Bar Code: Sequence Line :

Acquired on : 18 Aug 94 01:24 PM Instrument Method: SG-1.MTH Report Created on: 18 Aug 94 01:39 PM Analysis Method : SG-1.MTH


Sig. 1 in C:\HPCHEM\1\DATA\NV-F1055.D

Pk#	Ret Time	Area	Height	Туре	Width	Area %
	0.500	10166	4.54.54			
	0.520	42466	15151	VV	0.045	0.3313
2	0.668	9283	4314	PV	0.033	0.0724
3	0.796	3770	150 9	PV	0.037	0.0294
4	1.036	3924	683	PV	0.075	0.0306
5	1.124	760	382	VV	0.033	0.0059
6	1.183	517	384	VV	0.022	0.0040
7	1.265	108259	21551	VV	0.073	0.8445
8	1.526	5062	1127	VV	0.057	0.0395
9	1.612	546	246	VV	0.031	0.0043
10	1.990	7685	1453	BV	0.068	0.0599
11	2.719	872823	143631	PV	0.090	6.8084
12	3.007	2707448	328763	VV	0.119	21.1194
13	3.717	8073	1202	VV	0.082	0.0630
14	4.569	806941	90704	BV	0.124	6.2945
15	4.978	1146	521	VV	0.037	0.0089
16	5.021	1262	372	VB	0.057	0.0098
17	5.165	4656	2840	BB	0.024	0.0363
18	7.981	8131533	1284340	PV	0.096	63.4298
19	8.718	19812	3069	VV	0.108	0.1545
20	8.840	3967	2079	VV	0.032	0.0309
21	8.858	8604	2045	VV	0.070	0.0671
22	8.961	3997	1259	VV	0.044	0.0312
23	9.006	3576	991	VB	0.060	0.0279

Data File Name : C:\HPCHEM\1\DATA\NV-F1055.D Operator : JAY BERGER

Instrument : INSTRUMEN
Sample Name : SG-6R Page Number : 3 Vial Number Injection Number : Run Time Bar Code: Sequence Line Acquired on : 18 Aug 94 01:24 PM Instrument Method: SG-1.MTH Report Created on: 18 Aug 94 01:39 PM Analysis Method : SG-1.MTH 24 11.111 41229 PV 0.081 7250 0.3216 25 12.284 3907 820 PV 0.061 0.0305 26 13.669 10908 8123 VV 0.033 0.0851 27 14.344 7575 1766 BV 0.062 0.0591

Total area = 1.28197E+007

Data File Name : C:\HPCHEM\1\DATA\NV-R1055.D Operator : JAY BERGER Page Number : 1 : INSTRUMEN Instrument Vial Number Sample Name : SG-6R Injection Number: Run Time Bar Code: Sequence Line Acquired on : 18 Aug 94 Instrument Method: SG-1.MTH 01:24 PM Report Created on: 18 Aug 94 01:39 PM Analysis Method : SG-1.MTH Sample Info : 5:1 Dilution

Data File Name : C:\HPCHEM\1\DATA\NV-R1055.D

Operator : JAY BERGER Page Number : 2
Instrument : INSTRUMEN Vial Number :
Sample Name : SG-6R Injection Number :
Run Time Bar Code: Sequence Line :

Acquired on : 18 Aug 94 01:24 PM Instrument Method: SG-1.MTH Report Created on: 18 Aug 94 01:39 PM Analysis Method : SG-1.MTH

Sig. 2 in C:\HPCHEM\1\DATA\NV-R1055.D

_	Pk#	Ret Time	Area	Height	Туре	Width	Area %
	1	0.787	2582	845	VB	0.044	2.3540
	2	1.263	4461	1087	ВВ	0.061	4.0675
	3	4.548	11762	1417	BB	0.122	10.7251
	4	7.966	87581	15394	BB	0.088	79.8575
	5	11.092	3286	771	BB	0.066	2.9959

Total area = 109671

	•	 	- <u></u>
			•
			•
			•
			•
			•
			•
			•
			•
			•
			•
			•
			_
			•
			_
			•
			•

Data Worksheet GC/PID/ELCD Sample ID: SG-12R Control #: 818948

Project name: Geosystems
Sample date: 08/18/94
Project#: 300677
File name: NV-1057
Location: No. Hollywood
Analysis: 8010/8020
Analyst: Jay Berger
Sampled by: NC
Lab ID: Truck 1

Sample time: 13:41 Received time: 13:44 18Th. Injection time: 14:11 18Th. Probe depth: 5 Feet Purge volume: 40 CC Sample flow: NA CC/min Vacuum: NA "H2O Syringe: 7 Plastic 1cc Dilution factor: 20

GC ID: GC2 PID/ELCD Sample type: N1

Calibration date: 07/22/94

Calib std: no

Injection volum 0.025 mL

Calib Std. 110					
1	Standard		Sample		
Compound	RŤ	Avg. CF	RT	Area	ug/L
Dichlorodifluoromethane	0.59	138477		0	0.00
Vinyl chloride	0.71	271379		0	0.00
Chloroethane	0.87	195402		0	0.00
Trichlorofluoromethane	0.97	290771		0	0.00
1,1,2-Trichloro-trifluoroethane	1.23	334184		0	0.00
1,1-Dichloroethene (1,1-DCE)	1.22	443468	1.28	19645	1.77
Dichloromethane (Methylene chloride)	1.50	533175		0	0.00
trans-1,2-Dichloroethene(t-1,2-DCE)	1.67	486172		0	0.00
1,1-Dichloroethane (1,1-DCA)	1.96	499909		0	0.00
cis-1,2-Dichloroethene (c-1,2-DCE)	2.46	501846		0	0.00
Chloroform	2.81	644803		0	0.00
1,1,1-Trichloroethane (1,1,1-TCA)	2.97	559745	3.02	961916	68.74
Carbon tetrachloride	3.16	660954		0	0.00
Benzene	3.41	13196		0	0.00
1,2-Dichloroethane (1,2-DCA)	3.48	536556		0	0.00
Trichloroethene (TCE)	4.52	581271	4.58	181552	12.49
Toluene	7.02	12282		0	0.00
1,1,2-Trichloroethane (1,1,2-TCA)	7.82	53 8285		0	0.00
Tetrachloroethene (PCE)	7.94	640559	7.99	3686711	230.22
1,1,1,2-Tetrachioroethane	9.49	607279		0	0.00
Ethylbenzene	9.53	10974		0	0.00
m&p-Xylene	9.73	12790		0	0.00
o-Xylene	10.30	10909		0	0.00
1,1,2,2-Tetrachloroethane	11.41	602475		0	0.00

Total peaks of PID: 2
Total peaks of ELCD: 4
Unidentified peaks: 0

Votes:

^{1-*}Standard RT* is the retention time for the standard.

^{2-&}quot;Standard AVE. CF" is the average calibration factor for this instrument.

^{3-&}quot;Sample area" is the area under the peak.

^{4-&}quot;Sample ug/L" is the concentration of the analyte in the sample

Analysis Results GC/PID/ELCD

Sample ID: SG-12R Control #: 818948

Sample date: 08/18/94 Project#: 300677 Location: No. Hollywood

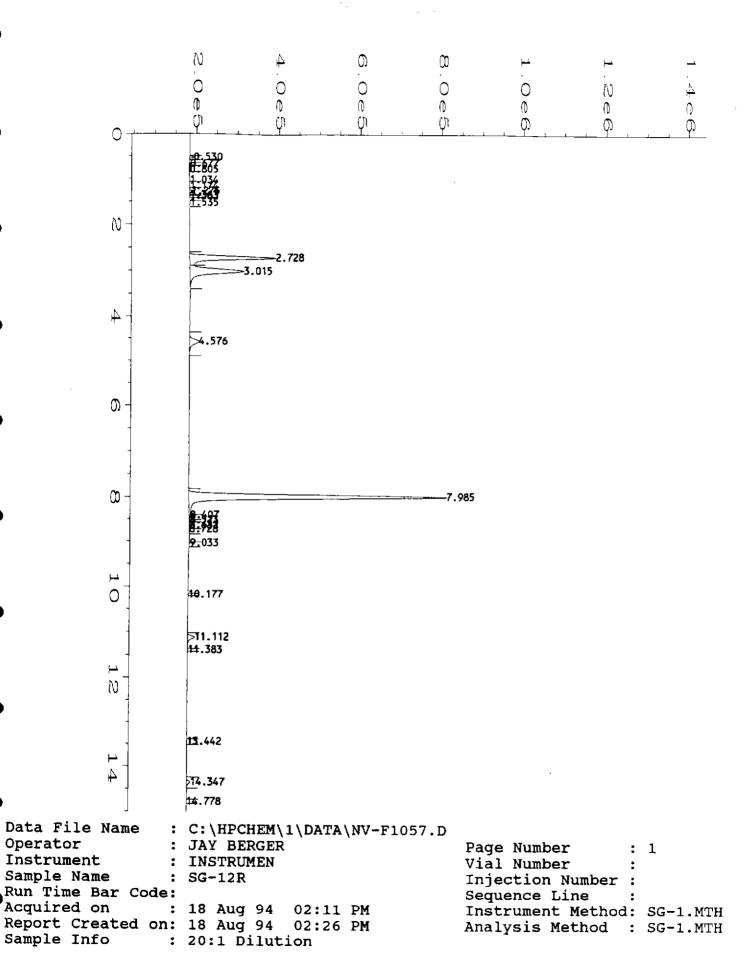
Analysis: 8010/8020 Sample type: N1

Sampled by: NC Sample time: 13:41

Probe depth: 5 Dilution factor: 20

Injection volume: 0.03

Feet mL


	MDL	Sample	
Compound	ug/L	uġ/L	
Dichlorodifluoromethane	0.42	<1.0	-
Vinyl chloride	0.16	<1.0	
Chloroethane	0,10	<1.0	
Trichlorofluoromethane	0.21	<1.0	
1,1,2-Trichloro-trifluoroethane	1.00	<1.0	
1,1-Dichloroethene (1,1-DCE)	0.18	1.77	
Dichloromethane (Methylene chloride)	0.15	<1.0	
trans-1,2-Dichloroethene(t-1,2-DCE)	0.18	<1.0	
1.1-Dichloroethane (1,1-DCA)	0.17	<1.0	
cis-1,2-Dichloroethene (c-1,2-DCE)	0.16	<1.0	
Chloroform	0.22	<1.0	
1,1,1-Trichloroethane (1,1,1-TCA)	0.19	68.74	
Carbon tetrachloride	0.53	<1.0	
Benzene	0.87	<1.0 `	
1,2-Dichloroethane (1,2-DCA)	0.26	<1.0	
Trichloroethene (TCE)	0.16	12.49	
Toluene	0.18	<1.0	
1,1,2-Trichloroethane (1,1,2-TCA)	0.17	<1.0	
Tetrachioroethene (PCE)	0.21	230.22	
1,1,1,2-Tetrachioroethane	0.31	<1.0	
Ethylbenzene	0.23	<1.0	
m&p-Xylene	0.27	<1.0	
o-Xylene	0.41	<1.0	
1,1,2,2-Tetrachloroethane	0.22	<1.0	

Notes:

8/25/94,12:34 PM-NV-1057.XLS Ver 3.0 (8010/8020) 04/15/94

^{1-&}quot;MDL ug/L" is the method limit.

^{2-&}quot;Sample ug/L" is the concentration of the analyte in the sample

Data File Name : C:\HPCHEM\1\DATA\NV-F1057.D

Operator : JAY BERGER Page Number : 2
Instrument : INSTRUMEN Vial Number : Sample Name : SG-12R Injection Number :

Run Time Bar Code: Sequence Line :

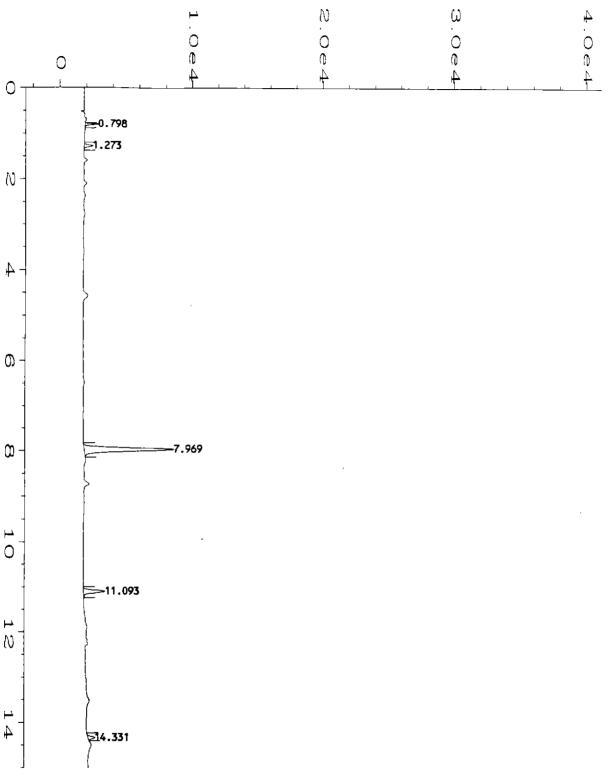
Acquired on : 18 Aug 94 02:11 PM Instrument Method: SG-1.MTH Report Created on: 18 Aug 94 02:26 PM Analysis Method : SG-1.MTH

Sig. 1 in C:\HPCHEM\1\DATA\NV-F1057.D

Pk#	Ret Time	Area	Height	Type	Width	Area %
1	0.530	23487	10219		0.037	0.3831
2	0.677	3400	2221	VV	0.024	0.0555
3	0.805	4312	1563	PV	0.039	0.0703
4	1.034	6159	821	PV	0.092	0.1005
5	1.174	4428	632	VV	0.092	0.0722
6	1.275	19645	4804	VV	0.061	0.3204
7	1.363	945	805	VV	0.020	0.0154
8	1.383	1652	788	VV	0.035	0.0269
9	1.535	4322	1100	VV	0.057	0.0705
10	2.728	1066835	209134	PV	0.078	17.4017
11	3.015	961916	130693	VV	0.110	15.6903
12	4.576	181552	22756	PV	0.122	2.9614
13	7.985	3686711	631483	PV	0.091	60.1358
14	8.407	13693	2645	VV	0.086	0.2233
15	8.523	4390	1448	VV	0.040	0.0716
16	8.632	11133	1616	VV	0.086	0.1816
17	8.728	3019	813	VV	0.051	0.0492
18	9.033	3065	2181	PV	0.021	0.0500
19	10.177	559	375	PV	0.024	0.0091
20	11.112	84808	16478	PV	0.079	1.3833
21	11.383	679	436	VV	0.023	0.0111
22	13.442	1515	597	PV	0.034	0.0247
23	14.347	41462	8249	PV	0.072	0.6763

Data File Name : C:\HPCHEM\1\DATA\NV-F1057.D

Operator : JAY BERGER
Instrument : INSTRUMEN
Sample Name : SG-12R Page Number : 3 Vial Number


Injection Number:

Run Time Bar Code: Sequence Line

Acquired on : 18 Aug 94 02:11 PM Instrument Method: SG-1.MTH Report Created on: 18 Aug 94 02:26 PM Analysis Method : SG-1.MTH

24 14.778 960 521 BV 0.026 0.0157

Total area = 6130647

Data File Name : C:\HPCHEM\1\DATA\NV-R1057.D Page Number Operator : JAY BERGER : 1 Instrument Vial Number : INSTRUMEN Sample Name : SG-12R Injection Number : Run Time Bar Code: Sequence Line Acquired on : 18 Aug 94 Instrument Method: SG-1.MTH 02:11 PM Report Created on: 18 Aug 94 Analysis Method : SG-1.MTH 02:26 PM

Sample Info : 20:1 Dilution

Data File Name : C:\HPCHEM\1\DATA\NV-R1057.D

Operator : JAY BERGER
Instrument : INSTRUMEN
Sample Name : SG-12R

Run Time Bar Code:

Acquired on : 18 Aug 94 02:11 PM Report Created on: 18 Aug 94 02:26 PM Page Number : 2 Vial Number : Injection Number : Sequence Line :

Instrument Method: SG-1.MTH Analysis Method : SG-1.MTH

Sig. 2 in C:\HPCHEM\1\DATA\NV-R1057.D

9	Pk# 	Ret Time	Area	Height	Type	Width	Area %
	1 2 3 4	0.798 1.273 7.969 11.093	1860 1932 35888 6646	1008 647 6778 1609	BB BB BB BB	0.029 0.047 0.079 0.064	3.8720 4.0216 74.7007 13.8328
	5	14.331	1717	506	BV	0.055	3.5730

Total area = 48043

·	
	_
	•
	•
	_
	•
	•
	_
	•
	•
•	
	_
	•
	_
	•
	•
	•
	_
	•
	•
	•

Data Worksheet GC/PID/ELCD Sample ID: SG-14R Control #: 818949

Project name: Geosystems
Sample date: 08/18/94
Project#: 300677
File name: NV-1058
Location: No. Hollywood
Analysis: 8010/8020
Analyst: Jay Berger

Sample time: 14:27 Received time: 14:31 18Th. Injection time: 14:36 18Th. Probe depth: 5 Feet Purge volume: 40 CC Sample flow: NA CC/min Vacuum: NA "H2O Syringe: 8 Plastic 1cc Dilution factor: 10

Sampled by: NC Lab ID: Truck 1 GC ID: GC2 PID/ELCD

Calibration date: 07/22/94

Sample type: N1 Calib std: no Injection volum 0.05 mL

Standard		Sample		
		RT	Area	ug/L
0.59***	138477			0.00
0.71	271379		0	0.00
0.87	195402		0	0.00
0.97	290771		0	0.00
1.23	334184		0	0.00
1.22	443468	1.27	15335	0.69
1.50	533175		0	0.00
1.67	486172		0	0.00
1.96	499909	•	0	0.00
2.46	501846		0	0.00
2.81	644803		0	0.00
2.97	559745	3.02	1077657	38,51
3.16	660954		0	0.00
3.41	13196		0	0.00
· 3.48	536556		0	0.00
4.52	581271	4.58	216436	7.45
7.02	12282		0	0.00
7.82	538285		0	0.00
7.94	640559	7.99	11448400	357.45
9.49	607279		0	0.00
9.53	10974		0	0.00
9.73	12790		0	0.00
10.30	10909			0.00
11.41	602475		Ō	0.00
	RT 0.59 0.71 0.87 0.97 1.23 1.22 1.50 1.67 1.96 2.46 2.81 2.97 3.16 3.41 ·3.48 4.52 7.02 7.82 7.94 9.49 9.53 9.73 10.30	RT Avg. CF 0.59 138477 0.71 271379 0.87 195402 0.97 290771 1.23 334184 1.22 443468 1.50 533175 1.67 486172 1.96 499909 2.46 501846 2.81 644803 2.97 559745 3.16 660954 3.41 13196 ·3.48 536556 4.52 581271 7.02 12282 7.82 538285 7.94 640559 9.49 607279 9.53 10974 9.73 12790 10.30 10909	RT Avg. CF RT 0.59	RT Avg. CF RT Area 0.59 138477 0 0.71 271379 0 0.87 195402 0 0.97 290771 0 1.23 334184 0 1.22 443468 1.27 15335 1.50 533175 0 1.67 486172 0 1.96 499909 0 2.46 501846 0 2.81 644803 0 2.97 559745 3.02 1077657 3.16 660954 0 3.41 13196 0 3.48 536556 0 4.52 581271 4.58 216436 7.02 12282 0 7.82 538285 0 7.94 640559 7.99 11448400 9.49 607279 0 9.53 10974 0 9.73 12790 0

Total peaks of PID: 2
Total peaks of ELCD: 4
Unidentified peaks: 0

Notes:

^{1-&}quot;Standard RT" is the retention time for the standard.

^{2-&}quot;Standard AVE. CF" is the average calibration factor for this instrument.

^{3-&}quot;Sample area" is the area under the peak.

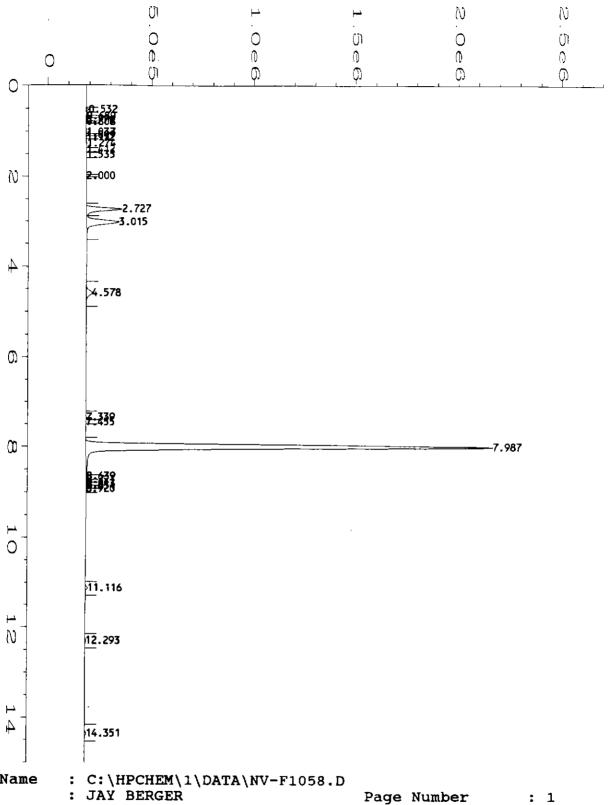
^{4-&}quot;Sample ug/L" is the concentration of the analyte in the sample

Analysis Results GC/PID/ELCD Sample ID: SG-14R Control #: 818949

Sample date: 08/18/94 Project#: 300677

Location: No. Hollywood Analysis: 8010/8020 Sample type: N1 Sampled by: NC Sample time: 14:27 Probe depth: 5

Dilution factor: 10 Injection volume: 0.05 Feet


mL

	MDL	Sample	
Compound	ug/L	ug/L	
Dichlorodifluoromethane	0.42	<1.0	
Vinyl chloride	0.16	<1.0	
Chloroethane	0.10	<1.0	
Trichlorofluoromethane	0.21	<1.0	
1,1,2-Trichloro-trifluoroethane	1.00	<1.0	
1,1-Dichloroethene (1,1-DCE)	0.18	0.69	
Dichloromethane (Methylene chloride)	0.15	<1.0	
trans-1,2-Dichloroethene(t-1,2-DCE)	0.18	<1.0	
1,1-Dichloroethane (1,1-DCA)	0.17	<1.0	
cis-1,2-Dichloroethene (c-1,2-DCE)	0.16	<1.0	
Chloroform	0.22	<1.0	
1,1,1-Trichloroethane (1,1,1-TCA)	0.19	38.51	
Carbon tetrachloride	0.53	<1.0	
Benzene	0.87	<1.0 `	
1,2-Dichloroethane (1,2-DCA)	0.26	<1.0	
Trichioroethene (TCE)	0.16	7.45	
Toluene	0.18	<1.0	
1,1,2-Trichloroethane (1,1,2-TCA)	0.17	<1.0	
Tetrachioroethene (PCE)	0.21	357.45	
1,1,1,2-Tetrachloroethane	0.31	<1.0	
Ethylbenzene	0.23	<1.0	
m&p-Xylene	0.27	<1.0	
o-Xylene	0.41	<1.0	
1,1,2,2-Tetrachloroethane	0.22	<1.0	

Notes:

^{1-&}quot;MDL ug/L" is the method limit.

^{2-&}quot;Sample ug/L" is the concentration of the analyte in the sample

Data File Name Operator Instrument : INSTRUMEN Vial Number Sample Name : SG-14R Injection Number: Run Time Bar Code: Sequence Line Acquired on : 18 Aug 94 02:36 PM Instrument Method: SG-1.MTH Report Created on: 18 Aug 94 02:51 PM Analysis Method : SG-1.MTH Sample Info : 10:1 Dilution

Data File Name : C:\HPCHEM\1\DATA\NV-F1058.D

Operator : JAY BERGER Page Number : Instrument : INSTRUMEN Vial Number : Sample Name : SG-14R Injection Number : Run Time Bar Code: Sequence Line :

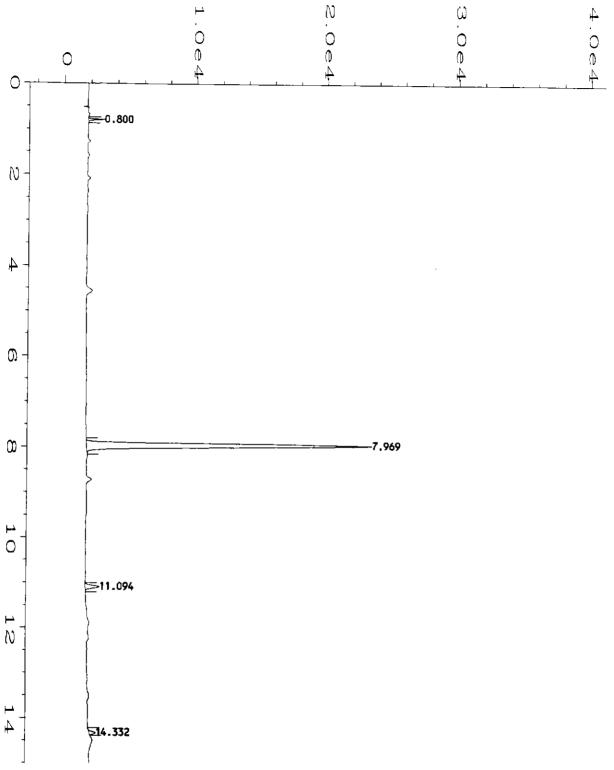
Acquired on : 18 Aug 94 02:36 PM Instrument Method: SG-1.MTH Report Created on: 18 Aug 94 02:51 PM Analysis Method : SG-1.MTH

Sig. 1 in C:\HPCHEM\1\DATA\NV-F1058.D

Pk# 	Ret Time	Area 	Height	Type	Width	Area %
' 1'	0.532	25664	11158	'VV '	0.035	0.1865
2	0.680	4792	3690	VV	0.020	. 0.0348
3	0.770	2258	744	PV	0.042	0.0164
4	0.808	2448	1460	VV	0.027	0.0178
5	1.037	9372	1021	PV	0.112	0.0681
6	1.099	2279	800	VV	0.041	0.0166
7	1.152	2590	776	VV	0.043	0.0188
8	1.274	15335	3247	VV	0.067	0.1114
9	1.412	1236	301	VB	0.054	0.0090
10	1.535	2801	887	BV	0.044	0.0204
11	2.000	221	125	PV	0.029	0.0016
12	2.727	817371	173659	PV	0.068	5.9393
13	3.015	1077657	157504	VV	0.093	7.8307
14	4.578	216436	28268	BV	0.117	1.5727
15	7.339	2561	692	PV	0.049	0.0186
16	7.455	1731	866	VV	0.031	0.0126
17	7.987	1.14484E+007	1985701	PV	0.086	83.1882
18	8.639	13456	2513	VV	0.069	0.0978
19	8.721	5777	1685	VV	0.057	0.0420
20	8.813	5705	1528	VV	0.053	0.0415
21	8.851	3443	1091	VV	0.053	0.0250
22	8.920	2089	685	VB	0.051	0.0152
23	11.116	46843	9885	BV	0.074	0.3404

Data File Name : C:\HPCHEM\1\DATA\NV-F1058.D

Operator : JAY BERGER
Instrument : INSTRUMEN
Sample Name : SG-14R Page Number : 3 Vial Number


Injection Number:

Run Time Bar Code: Sequence Line

Acquired on : 18 Aug 94 02:36 PM Instrument Method: SG-1.MTH Report Created on: 18 Aug 94 02:51 PM Analysis Method : SG-1.MTH

24 12.293 15952 2846 PV 0.072 0.1159 25 14.351 35627 7444 BV 0.074 0.2589

Total area = 1.3762E+007

Data File Name	:	C:\HPCHEM\	1\DATA	\NV-R1058.D			
Operator	:	JAY BERGER		•	Page Number	:	1
Instrument	:	INSTRUMEN			Vial Number	:	
Sample Name	:	SG-14R			Injection Number	:	
Run Time Bar Code	⊇:				Sequence Line	:	
Acquired on	:	18 Aug 94	02:36	PM	Instrument Method	1:	SG-1.MTH
Report Created or					Analysis Method	:	SG-1.MTH
Commis Info	_	40.4 541.4	.		•		

Sample Info : 10:1 Dilution

Data File Name : C:\HPCHEM\1\DATA\NV-R1058.D

Operator : JAY BERGER Page Number : 2
Instrument : INSTRUMEN Vial Number : Sample Name : SG-14R Injection Number :

Run Time Bar Code: Sequence Line :

Acquired on : 18 Aug 94 02:36 PM Instrument Method: SG-1.MTH Report Created on: 18 Aug 94 02:51 PM Analysis Method : SG-1.MTH

Sig. 2 in C:\HPCHEM\1\DATA\NV-R1058.D

-	Pk#	Ret Time	Area	Height	Туре	Width	Area %
	1 2	0.800 7.969	1771 113972	1236 21782	BB BB	0.022 0.082	1.4573 93.7660
	3	11.094	4221	1054	BB	0.063	3.4730
	4	14.332	1585	468	BV	0.055	1.3038

● Total area = 121549

			•
			•
	a.		•
·			•
			•
			•
			•
			•
			•
			•
			•

Data Worksheet GC/PID/ELCD Sample ID: SG-7R Control #: 8189410

Project name: Geosystems Sample date: 08/18/94

Project#: 300677
File name: NV-1059
Location: No. Hollywood
Analysis: 8010/8020
Analyst: Jay Berger
Sampled by: NC

Lab ID: Truck 1 GC ID: GC2 PID/ELCD

Sample type: N1 Calib std: no Sample time: 14:53

Received time: 14:57 18Th.
Injection time: 15:00 18Th.
Probe depth: 5 Feet
Purge volume: 40 CC
Sample flow: NA CC/min
Vacuum: NA "H2O
Syringe: 9 Plastic 1cc

Dilution factor: 10

Calibration date: 07/22/94

Injection volum 0.05 mL

Calib Stu. 110					
	Standard		Sample	- ·	
Compound	RT	Avg. CF	RT	Area	ug/L
Dichlorodifluoromethane	0.59	138477		0	0.00
Vinyl chloride	0.71	271379		0	0,00
Chloroethane	0.87	195402		0	0.00
Trichlorofluoromethane	0.97	290771		0	0.00
1,1,2-Trichloro-trifluoroethane	1.23	334184		0	0.00
1,1-Dichloroethene (1,1-DCE)	1.22	443468	1.27	95272	4.30
Dichloromethane (Methylene chloride)	1.50	533175		0	0.00
trans-1,2-Dichloroethene(t-1,2-DCE)	1.67	486172		0	0.00
1,1-Dichloroethane (1,1-DCA)	1.96	499909		0	0.00
cis-1,2-Dichloroethene (c-1,2-DCE)	2.46	501846		0	0.00
Chloroform	2.81	644803		0	0.00
1,1,1-Trichloroethane (1,1,1-TCA)	2.97	559745	3.01	2368225	84.62
Carbon tetrachloride	3.16	660954		0	0.00
Benzene	3.41	13196		0	0.00
1,2-Dichloroethane (1,2-DCA)	3.48	536556		0	0.00
Trichloroethene (TCE)	4.52	581271	4.58	561277	19.31
Toluene	7.0 2	12282		0	0.00
1,1,2-Trichloroethane (1,1,2-TCA)	7.82	538285		0	0.00
Tetrachloroethene (PCE)	7.94	640559	7.99	9371969	292.62
1,1,1,2-Tetrachioroethane	9.49	607279		0	0.00
Ethylbenzene	9.53	10974		0	0.00
m&p-Xylene	9.73	12790		0	0.00
o-Xylene	10.30	10909		0	0.00
1,1,2,2-Tetrachloroethane	11.41	602475		0	0.00

Total peaks of PID: 2
Total peaks of ELCD: 4
Unidentified peaks: 0

Votes:

^{1-&}quot;Standard RT" is the retention time for the standard.

^{2-&}quot;Standard AVE, CF" is the average calibration factor for this instrument.

^{3-&}quot;Sample area" is the area under the peak.

^{4-&}quot;Sample ug/L" is the concentration of the analyte in the sample

Analysis Results GC/PID/ELCD Sample ID: SG-7R Control #: 8189410

Sample date: 08/18/94

Project#: 300677

Location: No. Hollywood Analysis: 8010/8020

Sample type: N1

Sampled by: NC Sample time: 14:53

Probe depth: 5 Dilution factor: 10

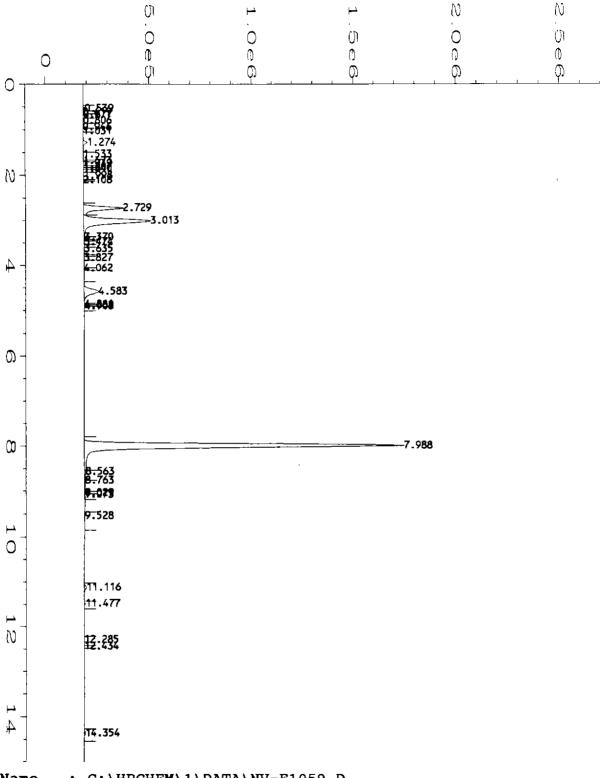
Injection valume: 0.05

Feet

mL

	MDL	Sample	
Compound	ug/L	uġ/L	
Dichlorodifluoromethane	0.42	্ব.০	
Vinyl chloride	0.16	<1.0	
Chloroethane	0.10	<1.0	
Trichlorofluoromethane	0.21	<1.0	
1,1,2-Trichloro-trifluoroethane	1.00	<1.0	
1,1-Dichloroethene (1,1-DCE)	0.18	4.30	
Dichloromethane (Methylene chloride)	0.15	<1.0	
trans-1,2-Dichloroethene(t-1,2-DCE)	0.18	<1.0	
1,1-Dichloroethane (1,1-DCA)	0.17	<1.0	
cis-1,2-Dichloroethene (c-1,2-DCE)	0.16	<1.0	
Chloroform	0.22	<1.0	
1,1,1-Trichloroethane (1,1,1-TCA)	0.19	84.62	
Carbon tetrachloride	0.53	<1.0	
Benzene	0.87	<1.0	
1,2-Dichloroethane (1,2-DCA)	0.26	<1.0	
Trichloroethene (TCE)	0.16	19.31	
Toluene	0.18	<1.0	
1,1,2-Trichloroethane (1,1,2-TCA)	0.17	<1.0	
Tetrachioroethene (PCE)	0.21	292.62	
1,1,1,2-Tetrachioroethane	0.31	<1.0	
Ethylbenzene	0.23	<1.0	
m&p-Xylene	0.27	<1.0	
o-Xylene	0.41	<1.0	
4 4 0 0 T-4			

0.22


<1.0

Notes:

1,1,2,2-Tetrachioroethane

^{1-&}quot;MDL ug/L" is the method limit.

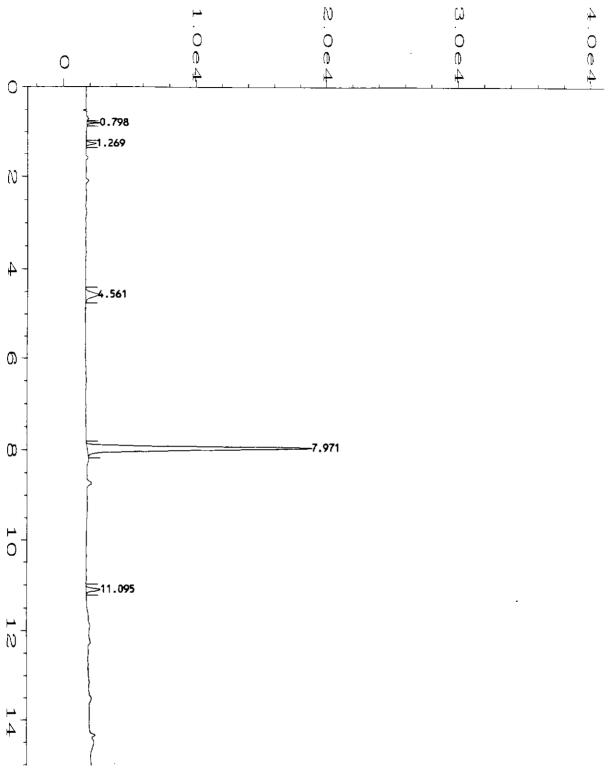
^{2-&}quot;Sample ug/L" is the concentration of the analyte in the sample

Data File Name : C:\HPCHEM\1\DATA\NV-F1059.D Operator : JAY BERGER Page Number : 1 Vial Number Instrument : INSTRUMEN Sample Name : \$G-7R Injection Number: Run Time Bar Code: Sequence Line Acquired on : 18 Aug 94 03:00 PM Instrument Method: SG-1.MTH Report Created on: 18 Aug 94 Analysis Method : SG-1.MTH 03:15 PM

Sample Info : 10:1 Dilution

Data File Name : C:\HPCHEM\1\DATA\NV-F1059.D

Operator : JAY BERGER Page Number : 2
Instrument : INSTRUMEN Vial Number : Sample Name : SG-7R Injection Number : Run Time Bar Code: Sequence Line :


Acquired on : 18 Aug 94 03:00 PM Instrument Method: SG-1.MTH Report Created on: 18 Aug 94 03:15 PM Analysis Method : SG-1.MTH

Sig. 1 in C:\HPCHEM\1\DATA\NV-F1059.D

Pk#	Ret Time	Area	Height	Type	Width	Area %
1	0.539	23953	8176	BV	0.043	0.1739
2	0.619	1873	745	PV	0.039	0.0136
3	0.677	6551	3895	VV	0.026	0.0476
4	0.806	3833	1871	PV	0.034	0.0278
5	0.946	2560	690	PV	0.062	0.0186
6	1.031	4142	1029	VV	0.067	0.0301
7	1.274	95272	20370	VV	0.066	0.6916
8	1.533	9891	1618	VV	0.082	0.0718
9	1.673	890	452	VV	0.033	0.0065
10	1.739	1992	453	VV	0.064	0.0145
11	1.807	782	419	VV	0.031	0.0057
12	1.840	848	461	VV	0.027	0.0062
13	1.998	8056	1552	VV	0.074	0.0585
14	2.106	471	341	VV	0.020	0.0034
15	2.729	973673	192530	BV	0.076	7.0680
16	3.013	2368225	323589	VV	0.107	17.1913
17	3.370	13618	3865	VV	0.045	0.0989
18	3.474	12676	3409	$\Delta\Delta$	0.050	0.0920
19	3.635	20303	2665	VV	0.094	0.1474
20	3.827	7679	1832	VV	0.057	0.0557
21	4.062	4019	1538	VV	0.035	0.0292
22	4.583	561277	70916	PV	0.104	4.0744
23	4.861	5484	3549	VV	0.026	0.0398

Data File Name : C:\HPCHEM\1\DATA\NV-F1059.D : JAY BERGER Operator Page Number : 3 Instrument : INSTRUMEN Vial Number Sample Name : SG-7R Injection Number : Run Time Bar Code: Sequence Line : : 18 Aug 94 03:00 PM Acquired on Instrument Method: SG-1.MTH Report Created on: 18 Aug 94 03:15 PM Analysis Method : SG-1.MTH 24 4.880 VV 5789 4087 0.024 0.0420 25 4.906 8881 3371 VV 0.044 0.0645 26 7.988 9371969 1563589 BV0.092 68.0323 27 8.563 65792 5742 VV 0.191 0.4776 28 8.763 49811 4222 VV 0.197 0.3616 29 9.029 8424 2865 VV 0.049 0.0611 30 9.073 VV 19171 2739 0.089 0.1392 31 9.528 22527 1789 VV 0.153 0.1635 32 11.116 55771 10194 VV 0.082 0.4049 33 11.477 10817 6693 VV 0.036 0.0785 34 12.285 3735 853 BV 0.062 0.0271 35 12.434 806 751 VV 0.016 0.0059 36 14.354 24193 4924 BV 0.068 0.1756

Total area = 1.37758E+007

Data File Name : C:\HPCHEM\1\DATA\NV-R1059.D Page Number Operator : JAY BERGER Instrument : INSTRUMEN Vial Number Injection Number: Sample Name : SG-7R Sequence Line Run Time Bar Code: Instrument Method: SG-1.MTH Acquired on : 18 Aug 94 03:00 PM Analysis Method : SG-1.MTH Report Created on: 18 Aug 94 03:15 PM

Sample Info : 10:1 Dilution

Data File Name : C:\HPCHEM\1\DATA\NV-R1059.D

Operator : JAY BERGER Page Number : 2
Instrument : INSTRUMEN Vial Number :
Sample Name : SG-7R Injection Number :
Run Time Bar Code: Sequence Line :

Run Time Bar Code: Sequence Line :
Acquired on : 18 Aug 94 03:00 PM Instrument Method: SG-1.MTH
Report Created on: 18 Aug 94 03:15 PM Analysis Method : SG-1.MTH

Sig. 2 in C:\HPCHEM\1\DATA\NV-R1059.D

 Pk#	Ret Time	Area	Height	Туре	Width	Area %	
1	0.798	1804	979	BB	0.029	1.6798	
2	1.269	2342	755	BB	0.048	2.1809	
3	4.561	6961	963	BB	0.111	6.4837	
4	7.971	91922	17139	BB	0.084	85.6144	
5	11.095	4339	1064	BB	0.064	4.0412	

Total area = 107367

	 ·	
		•
		_
		•
		_
		•
		•
		•
•		
		_
		•
		•
		•
		•
		_
		_
		•
		•
		•
		•
		•
		•
		•
		•
		•
		•
		•
		•
		•
		•
		•
		•

Data Worksheet GC/PID/ELCD Sample ID: SG-12.1R Control #: 8189411

Project name: Geosystems

Sample date: 08/18/94
Project#: 300677
File name: NV-1060
Location: No. Hollywood
Analysis: 8010/8020
Analyst: Jay Berger
Sampled by: NC

Purge volume: 60 Sample flow: NA Vacuum: NA Syringe: 1

Sample time: 15:19

Received time: 15:22

Injection time: 15:26

Probe depth: 15

18Th. Feet CC CC/min

Plastic 1cc

18Th.

"H2O

Lab ID: Truck 1

GC ID: GC2 PID/ELCD Sample type: N1

Dilution factor: 4
Calibration date: 07/22/94

Injection volum 0.125

mL

Cample type. 111	ıı ije	Cuch volum U.	120	HL			
Calib std: no							
	Standard		Sample				
Compound	RT	Avg. CF	RT	Агеа	ug/L]		
Dichlorodifluoromethane	0.59	138477		0	0.00		
Vinyl chloride	0.71	271379		0	0.00		
Chloroethane	0.87	195402		0	0.00		
Trichlorofluoromethane	0.97	290771		0	0.00		
1,1,2-Trichloro-trifluoroethane	1.23	334184		0	0.00		
1,1-Dichloroethene (1,1-DCE)	1.22	443468	1.27	115637	2.09		
Dichloromethane (Methylene chloride)	1.50	533175		0	0.00		
trans-1,2-Dichloroethene(t-1,2-DCE)	1.67	486172		0	0.00		
1,1-Dichloroethane (1,1-DCA)	1.96	499909	•	0	0.00		
cis-1,2-Dichloroethene (c-1,2-DCE)	2.46	501846		0	0.00		
Chloroform	2.81	644803		0	0.00		
1,1,1-Trichloroethane (1,1,1-TCA)	2.97	559745	3.02	3517953	50.28		
Carbon tetrachloride	3.16	660954		0	0.00		
Benzene	3.41	13196		0	0.00		
1,2-Dichloroethane (1,2-DCA)	3.48	536556		0	0.00		
Trichloroethene (TCE)	4.52	581271	4.58	684109	9.42		
Toluene	7.02	12282		0	0.00		
1,1,2-Trichloroethane (1,1,2-TCA)	7.82	538285		0	0.00		
Tetrachloroethene (PCE)	7.94	640559	7.99	14664800	183.15		
1,1,1,2-Tetrachloroethane	9.49	607279		0	0.00		
Ethylbenzene	9.53	10974		0	0.00		
m&p-Xylene	9.73	12790		0	0.00		
o-Xylene	10.30	10909		0	0.00		
1,1,2,2-Tetrachloroethane	11.41	602475		0	0.00		

Total peaks of PID: 2
Total peaks of ELCD: 4
Unidentified peaks: 0

Notes

^{1-&}quot;Standard RT" is the retention time for the standard.

^{2-&}quot;Standard AVE. CF" is the average calibration factor for this instrument.

^{3-&}quot;Sample area" is the area under the peak.

^{4-&}quot;Sample ug/L" is the concentration of the analyte in the sample

Analysis Results GC/PID/ELCD

Sample ID: SG-12.1R Control #: 8189411

Sample date: 08/18/94

Project#: 300677 Location: No. Hollywood

Analysis: 8010/8020

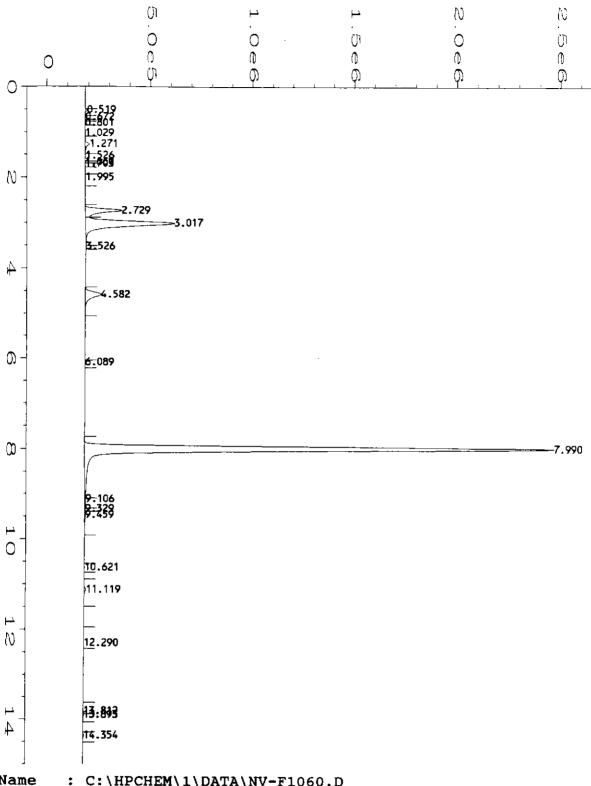
Sample type: N1

Sampled by: NC Sample time: 15:19

Probe depth: 15 Dilution factor: 4

Injection volume: 0.13

Feet


mL

Compound	MDL ug/L	Sample	
Dichlorodifluoromethane	0.42	ug/L <1.0	
Vinyl chloride	0.16	<1.0	
Chloroethane	0.10	<1.0 <1.0	
Trichlorofluoromethane	0.21	<1.0	
1,1,2-Trichloro-trifluoroethane	1.00	<1.0	
1,1-Dichloroethene (1,1-DCE)	0.18	2.09	
Dichloromethane (Methylene chloride)	0.15	<1.0	
trans-1,2-Dichloroethene(t-1,2-DCE)	0.18	<1.0	
1,1-Dichloroethane (1,1-DCA)	0.17	<1.0	
cis-1,2-Dichloroethene (c-1,2-DCE)	0.16	<1.0	
Chloroform	0.22	<1.0	
1,1,1-Trichloroethane (1,1,1-TCA)	0.19	50.28	
Carbon tetrachloride	0.53	<1.0	
Benzene	0.87	<1.0	•
1,2-Dichloroethane (1,2-DCA)	0.26	<1.0	
Trichloroethene (TCE)	0.16	9.42	
Toluene	0.18	<1.0	
1,1,2-Trichloroethane (1,1,2-TCA)	0.17	<1.0	
Tetrachloroethene (PCE)	0.21	183.15	
1,1,1,2-Tetrachloroethane	0.31	<1.0	
Ethylbenzene	0.23	<1.0	
m&p-Xylene	0.27	<1.0	
o-Xylene	0.41	<1.0	
1,1,2,2-Tetrachloroethane	0.22	<1.0	•

Notes:

^{1-*}MDL ug/L* is the method limit.

^{2-&}quot;Sample ug/L" is the concentration of the analyte in the sample

Data File Name	:	C:\HPCHEM\1\DATA\NV-F1060.D	
Operator		JAY BERGER	Page Number : 1
Instrument			Vial Number :
Sample Name	:	SG-12.1R	Injection Number :
Run Time Bar Code			Sequence Line :
Acquired on	:	18 Aug 94 03:26 PM	Instrument Method: SG-1.MTH
Report Created or	n:	18 Aug 94 03:42 PM	Analysis Method : SG-1.MTH
Sample Info			-

Data File Name : C:\HPCHEM\1\DATA\NV-F1060.D

Operator : JAY BERGER Page Number : Instrument : INSTRUMEN Vial Number : Sample Name : SG-12.1R Injection Number : Run Time Bar Code: Sequence Line :

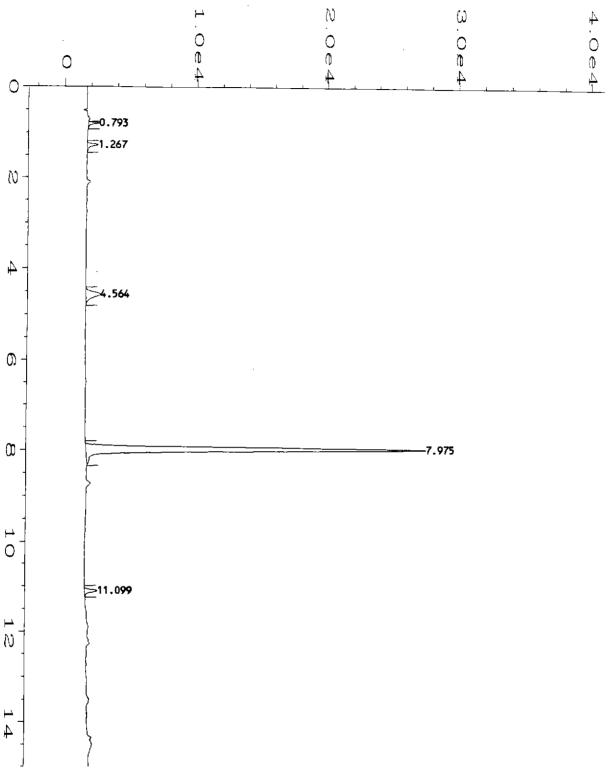
Acquired on : 18 Aug 94 03:26 PM Instrument Method: SG-1.MTH Report Created on: 18 Aug 94 03:42 PM Analysis Method : SG-1.MTH

Sig. 1 in C:\HPCHEM\1\DATA\NV-F1060.D

Pk#	Ret Time	Area	Height	Туре	Width	Area %
1	0.519	34125	10429	BV	0.055	0.1680
2	0.672	5789	3137	PV	0.029	0.0285
3	0.801	3158	1490	BV	0.034	0.0155
4	1.029	7498	958	PV	0.106	0.0369
5	1.271	115637	21615	VV	0.076	0.5692
6	1.526	9372	1472	VV	0.082	0.0461
7	1.660	1028	425	VV	0.034	0.0051
8	1.703	1029	330	VB	0.052	0.0051
9	1.995	12678	2067	BV	0.082	0.0624
10	2.729	1062754	176429	PV	0.090	5.2312
11	3.017	3517953	432142	VV	0.122	17.3165
12	3.526	4017	1979	VV	0.034	0.0198
13	4.582	684109	76732	PV	0.135	3.3674
14	6.089	3430	1320	PB	0.047	0.0169
15	7.990	1.46648E+007	2287619	BV	0.099	72.1846
16	9.106	50566	4457	VV	0.189	0.2489
17	9.329	12424	3135	VV	0.066	0.0612
18	9.459	42923	2524	VV	0.229	0.2113
19	10.621	3966	2336	VV	0.041	0.0195
20	11.119	49554	9006	BV	0.082	0.2439
21	12.290	6061	829	BV	0.098	0.0298
22	13.812	3303	1044	BV	0.052	0.0163
23	13.893	5024	840	VV	0.077	0.0247

Data File Name : C:\HPCHEM\1\DATA\NV-F1060.D

Page Number


Operator : JAY BERGER
Instrument : INSTRUMEN
Sample Name : SG-12.1R Vial Number Injection Number :

Run Time Bar Code: Sequence Line

Acquired on : 18 Aug 94 03:26 PM Instrument Method: SG-1.MTH Report Created on: 18 Aug 94 03:42 PM Analysis Method : SG-1.MTH

24 14.354 14469 2777 BV 0.079 0.0712

Total area = 2.03156E+007


```
Data File Name
                 : C:\HPCHEM\1\DATA\NV-R1060.D
Operator
                 : JAY BERGER
                                                Page Number
Instrument
                 : INSTRUMEN
                                                Vial Number
Sample Name
                 : SG-12.1R
                                                 Injection Number:
Run Time Bar Code:
                                                Sequence Line
Acquired on
                                                Instrument Method: SG-1.MTH
                 : 18 Aug 94
                              03:26 PM
Report Created on: 18 Aug 94
                              03:42 PM
                                                Analysis Method : SG-1.MTH
Sample Info
                 : 4:1 Dilution
```

Data File Name : C:\HPCHEM\1\DATA\NV-R1060.D
Operator : JAY BERGER
Instrument : INSTRUMEN
Sample Name : SG-12.1R Page Number : 2 Vial Number Injection Number : Run Time Bar Code: Sequence Line :

Acquired on : 18 Aug 94 03:26 PM Report Created on: 18 Aug 94 03:42 PM Instrument Method: SG-1.MTH Analysis Method : SG-1.MTH

Sig. 2 in C:\HPCHEM\1\DATA\NV-R1060.D

1	Pk#	Ret Time	Area	Height	Туре	Width	Area %
1	1	0.793	2078	832	BB	0.038	1.2322
	2	1.267	3427	847	BB	0.060	2.0321
	3	4.564	9468	1130	BB	0.119	5.6147
	4	7.975	149523	25977	BB	0.090	88.6708
	5	11.099	4132	943	BB	0.068	2.4503

Total area = 168627